• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Duvida no exercicios

Duvida no exercicios

Mensagempor CarolMarques » Sáb Fev 23, 2013 13:40

Olá,
Tem duas integrais que eu não consegui resolver , a primeira:
\int_{}^{} \frac{{e}^{x} + 1 }{{e}^{2x} - 1} dx

A primeira coisa que eu fiz foi simplifica a função ficando assim;

\int_{}^{} \frac{1}{{e}^{x} - 1}

Dai eu tentei Integrar por partes substituindo u=\frac{1}{{e}^{x} - 1}

e dv=dx

A Segunda Integral q eu não consegui resolver foi essa daqui:
\int_{}^{} \frac{1}{{x}^{3}}\sqrt[]{1 + \frac{1}{2x}} dx

Essa eu não sei nem como começar.Seria uma integral por partes tendo como dv =1/x³dx e u= ao restante?
CarolMarques
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 29
Registrado em: Qui Mai 03, 2012 20:26
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: Duvida no exercicios

Mensagempor e8group » Sáb Fev 23, 2013 14:09

Boa tarde . Usando a expressão fatorada que vc achou,somando-se e^x - e^x no numerador dela (note que 0 é o elemento neutro da adição ) ,


\frac{1 - e^x + e^x} {e^x - 1} =  - \frac{e^x - 1}{e^x - 1} +  \frac{e^x}{e^x - 1} =  - 1 + \frac{e^x}{e^x - 1}

Observe que \frac{e^x}{e^x - 1} é extamemte a derivada da expressão ln(e^x -1) não é verdade ?

tente concluir .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}