• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Duvida no exercicios

Duvida no exercicios

Mensagempor CarolMarques » Sáb Fev 23, 2013 13:40

Olá,
Tem duas integrais que eu não consegui resolver , a primeira:
\int_{}^{} \frac{{e}^{x} + 1 }{{e}^{2x} - 1} dx

A primeira coisa que eu fiz foi simplifica a função ficando assim;

\int_{}^{} \frac{1}{{e}^{x} - 1}

Dai eu tentei Integrar por partes substituindo u=\frac{1}{{e}^{x} - 1}

e dv=dx

A Segunda Integral q eu não consegui resolver foi essa daqui:
\int_{}^{} \frac{1}{{x}^{3}}\sqrt[]{1 + \frac{1}{2x}} dx

Essa eu não sei nem como começar.Seria uma integral por partes tendo como dv =1/x³dx e u= ao restante?
CarolMarques
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 29
Registrado em: Qui Mai 03, 2012 20:26
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: Duvida no exercicios

Mensagempor e8group » Sáb Fev 23, 2013 14:09

Boa tarde . Usando a expressão fatorada que vc achou,somando-se e^x - e^x no numerador dela (note que 0 é o elemento neutro da adição ) ,


\frac{1 - e^x + e^x} {e^x - 1} =  - \frac{e^x - 1}{e^x - 1} +  \frac{e^x}{e^x - 1} =  - 1 + \frac{e^x}{e^x - 1}

Observe que \frac{e^x}{e^x - 1} é extamemte a derivada da expressão ln(e^x -1) não é verdade ?

tente concluir .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.