por klueger » Ter Fev 05, 2013 15:42
Olá. Tenho uma integral que não cheguei a solução:

'
Dica dela: usar "x.x²" no começo, primeiro fazer Substituição e depois por Partes.
-
klueger
- Usuário Ativo

-
- Mensagens: 19
- Registrado em: Dom Fev 03, 2013 15:43
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Civil
- Andamento: cursando
por e8group » Ter Fev 05, 2013 20:34
Façamos então a dica , temos :

.
Sendo

.Substituindo ,obtemos :

Tente concluir.
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Integral por Substituição e por Partes
por Jhenrique » Sáb Set 15, 2012 14:59
- 23 Respostas
- 30392 Exibições
- Última mensagem por Jhenrique

Qua Set 26, 2012 21:26
Cálculo: Limites, Derivadas e Integrais
-
- [INTEGRAL] SUBSTITUIÇÃO E POR PARTES
por FERNANDA_03 » Sex Mar 29, 2013 14:00
- 1 Respostas
- 1706 Exibições
- Última mensagem por young_jedi

Sex Mar 29, 2013 16:08
Cálculo: Limites, Derivadas e Integrais
-
- Integral por substituição ou por partes.
por Sobreira » Sáb Jul 20, 2013 15:03
- 1 Respostas
- 2604 Exibições
- Última mensagem por young_jedi

Sex Jul 26, 2013 20:42
Cálculo: Limites, Derivadas e Integrais
-
- [Integral por partes e substituição]
por vergilxdante » Seg Mar 31, 2014 15:28
- 0 Respostas
- 1681 Exibições
- Última mensagem por vergilxdante

Seg Mar 31, 2014 15:28
Cálculo: Limites, Derivadas e Integrais
-
- Integral por partes ou substituição
por Flavio Casaes » Dom Fev 08, 2015 00:20
- 8 Respostas
- 6393 Exibições
- Última mensagem por nakagumahissao

Seg Fev 09, 2015 12:32
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Exercicios de polinomios
Autor:
shaft - Qua Jun 30, 2010 17:30
Então, o exercicio pede para encontrar

.
Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !
Assunto:
Exercicios de polinomios
Autor:
Douglasm - Qua Jun 30, 2010 17:53
Bom, se desenvolvermos isso, encontramos:
Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):
Somando a primeira e a segunda equação:
Finalmente:
Até a próxima.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.