• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral] Integral por substitução

[Integral] Integral por substitução

Mensagempor RafaelPereira » Qui Dez 27, 2012 22:52

Olá pessoal, como pode-se resolver a integral \int_{}^{} \frac{{\left({a}^{x}-{b}^{x} \right)}^{2}}{{a}^{x}{b}^{x}} dx pelo método da substituição?
RafaelPereira
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Dom Dez 02, 2012 17:22
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando

Re: [Integral] Integral por substitução

Mensagempor e8group » Sex Dez 28, 2012 00:29

Note que ,

\int \frac{(a^x - b^x)^2}{a^xb^x}dx = \int \frac{a^{2x} - 2a^xb^x + b^{2x}}{a^xb^x} dx = \int \left( \frac{a^x}{b^x} - 2 + \frac{b^x}{a^x}\right )dx = \int k^x dx - 2\int dx + \int (k^{-1} )^x dx

Onde :

k = \frac{a}{b}

Consegue concluir ?

Dica.: Rescreva k^x como e^{x \cdot ln(k)} .(Assumindo que k > 0 )

Qualquer coisa comente .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Integral] Integral por substitução

Mensagempor RafaelPereira » Sex Dez 28, 2012 02:42

Partindo de onde você parou eu calculei as integrais individuais, assumindo que \int_{}^{} {k}^{x} dx = \frac{{k}^{x}}{ln(k)} ,(Para k>0),
que
-2\int_{}^{}dx = -2x
e que \int_{}^{}{k}^{-x} dx = \frac{{k}^{-x}}{ln(k)}
(não se está muito certa essa última.)

Daí, substituindo o valor de k=\frac{a}{b}
eu cheguei ao seguinte resultado \frac{{(\frac{a}{b})}^{x}+{(\frac{b}{a})}^{x}}{ln(a)-ln(b)}-2x

Porém, a resposta que está no livro é -\frac{{(\frac{a}{b})}^{x}-{(\frac{b}{a})}^{x}}{ln(a)-ln(b)}-2x

O que mostra que está muito parecida a resposta, mas não está igual, então a questão é: de onde vem os - do numerador da fração ?
RafaelPereira
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Dom Dez 02, 2012 17:22
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando

Re: [Integral] Integral por substitução

Mensagempor e8group » Sex Dez 28, 2012 12:20

Boa tarde , sua integral estar errada . Por favor, verifique que \int k^{-x}dx \neq  \frac{k^{x}}{ln(k)} +c .

Pois , \left( \frac{k^{-x}}{ln(k)} +c\right )' = \left( \frac{e^{-x \cdot ln(k)}}{ln(k)} +c\right )' = \frac{1}{ln(k)} \cdot e^{-x\cdot ln(k)} \cdot (-x\cdot ln(k))' = \frac{k^{-x}}{ln(k)}\cdot (-ln(k)) = - k^{-x} .

Diante disto é fácil ver que ,

\int k^{-x}dx = - \frac{k^{-x}}{ln(k)} +c (Verifique ! )

A resposta condiz com o gabarito agora ?

Editado ;
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Integral] Integral por substitução

Mensagempor RafaelPereira » Sex Dez 28, 2012 15:59

Boa tarde, não entendi completamente esse processo \left( \frac{e^{-x \cdot ln(k)}}{ln(k)} +c\right )' = \frac{1}{ln(k)} \cdot e^{-x\cdot ln(k)} \cdot (-x\cdot ln(k))'

Sei que você usou a regra da cadeia, mas tenho as seguintes dúvidas:

Você considerou {ln(k)} como sendo um constante e por isso não o derivou e também é por isso que (-x\cdot ln(k))' = (-ln(k)) ?

Considerando a integral de \int k^{-x}dx = - \frac{k^{-x}}{ln(k)} +c e substituindo o valor de k por \frac{a}{b} eu cheguei ao seguinte processo:

\frac{{k}^{x}-{k}^{-x}}{ln(k)}-2x   =    \frac{{\left(\frac{a}{b} \right)}^{x}-{\left(\frac{a}{b} \right)}^{-x}}{ln\left(\frac{a}{b} \right)}-2x   =   \frac{{\left(\frac{a}{b} \right)}^{x}-{\left(\frac{b}{a} \right)}^{x}}{ln\left(a \right)-ln\left(b \right)}-2x

mas ainda assim não confere com o gabarito, pois lá mostra que tem um - antes da fração.

Ficando a resposta assim:

-\frac{{\left(\frac{a}{b} \right)}^{x}-{\left(\frac{b}{a} \right)}^{x}}{ln\left(a \right)-ln\left(b \right)}-2x

Então, de onde veio esse - que está antes da fração?
RafaelPereira
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Dom Dez 02, 2012 17:22
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando

Re: [Integral] Integral por substitução

Mensagempor e8group » Sex Dez 28, 2012 17:43

Sim , o ln(k) é uma constante . Lembre-se k=  a/b e a ,b são reais fixos(b \neq 0 ,que pela nossa hipótese k> 0) .

Quanto ao exercício ,refiz o mesmo ,mas não conseguir chegar no gabarito .

Veja o resultado da sua integral, http://www.wolframalpha.com/input/?i=in ... %5Ex%29+dx .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Integral] Integral por substitução

Mensagempor RafaelPereira » Sex Dez 28, 2012 18:36

Ok, vi o resultado.

Muito Obrigado, suas instruções foram de grande ajuda.
RafaelPereira
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Dom Dez 02, 2012 17:22
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: