por Claudin » Sáb Dez 01, 2012 17:35
Utilize as propriedades das integrais para verificar as desigualdades sem calcular as integrais
a)
![\int_{0}^{1}\sqrt[]{1+x^2}dx\leq\int_{0}^{1}\sqrt[]{1+x}dx \int_{0}^{1}\sqrt[]{1+x^2}dx\leq\int_{0}^{1}\sqrt[]{1+x}dx](/latexrender/pictures/e608c0c3ad7f7260c185f5cf6c6306ea.png)
b)
![2\leq\int_{-1}^{1}\sqrt[]{1+x^2}dx\leq2\sqrt[]{2} 2\leq\int_{-1}^{1}\sqrt[]{1+x^2}dx\leq2\sqrt[]{2}](/latexrender/pictures/acc41d3f0160cee43792c05e2846cd21.png)
c)
![\frac{\sqrt[]{2}}{24}\Pi\leq\int_{\frac{\Pi}{6}}^{\frac{\Pi}{4}}cosxdx\leq\frac{\sqrt[]{3}}{24}\Pi \frac{\sqrt[]{2}}{24}\Pi\leq\int_{\frac{\Pi}{6}}^{\frac{\Pi}{4}}cosxdx\leq\frac{\sqrt[]{3}}{24}\Pi](/latexrender/pictures/776d6127ebea1b5e3533a9e57d30ed1b.png)
Não sei como resolver o exercicio
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
-
Claudin
- Colaborador Voluntário

-
- Mensagens: 913
- Registrado em: Qui Mai 12, 2011 17:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por LuizAquino » Ter Dez 11, 2012 17:04
Claudin escreveu:Utilize as propriedades das integrais para verificar as desigualdades sem calcular as integrais
a)
![\int_{0}^{1}\sqrt[]{1+x^2}dx\leq\int_{0}^{1}\sqrt[]{1+x}dx \int_{0}^{1}\sqrt[]{1+x^2}dx\leq\int_{0}^{1}\sqrt[]{1+x}dx](/latexrender/pictures/e608c0c3ad7f7260c185f5cf6c6306ea.png)
b)
![2\leq\int_{-1}^{1}\sqrt[]{1+x^2}dx\leq2\sqrt[]{2} 2\leq\int_{-1}^{1}\sqrt[]{1+x^2}dx\leq2\sqrt[]{2}](/latexrender/pictures/acc41d3f0160cee43792c05e2846cd21.png)
c)
![\frac{\sqrt[]{2}}{24}\Pi\leq\int_{\frac{\Pi}{6}}^{\frac{\Pi}{4}}cosxdx\leq\frac{\sqrt[]{3}}{24}\Pi \frac{\sqrt[]{2}}{24}\Pi\leq\int_{\frac{\Pi}{6}}^{\frac{\Pi}{4}}cosxdx\leq\frac{\sqrt[]{3}}{24}\Pi](/latexrender/pictures/776d6127ebea1b5e3533a9e57d30ed1b.png)
Não sei como resolver o exercicio
a) Para x no intervalo [0, 1], sabemos que:

Somando 1 em ambos os lados dessa inequação, temos que:

Como x está no intervalo [0, 1], sabemos que

e 1 + x serão números positivos. Podemos então aplicar a raiz quadrada em ambos os lados da inequação:

Por fim, usando as propriedades das integrais, temos que:
b) Para x no intervalo [-1, 1], sabemos que:

Somando 1 em ambos os lados dessa inequação, temos que:

Como cada parte dessa inequação é um número positivo, podemos aplicar a raiz quadrada em cada uma delas:

Por fim, usando as propriedades das integrais, temos que:

Agora tente concluir o exercício a partir daí.
c) Para x no intervalo
![\left[\frac{\pi}{6}, \frac{\pi}{4}\right] \left[\frac{\pi}{6}, \frac{\pi}{4}\right]](/latexrender/pictures/3cf28da642a88aaf74977af5b209c93a.png)
, lembre-se que:

Agora tente concluir o exercício considerando essa informação.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Integral] Estou com dificuldade para resolver esta integral
por Paulo Perez » Qui Out 03, 2013 12:22
- 2 Respostas
- 4612 Exibições
- Última mensagem por Paulo Perez

Sex Out 04, 2013 16:32
Cálculo: Limites, Derivadas e Integrais
-
- [INTEGRAL] Integral por partes! Alguem pode me ajudar?
por mih123 » Qua Jan 16, 2013 20:18
- 3 Respostas
- 4581 Exibições
- Última mensagem por adauto martins

Qua Out 22, 2014 09:11
Cálculo: Limites, Derivadas e Integrais
-
- [Integral] Resolver Integral definida com trigonometria
por rodrigoboreli » Dom Set 07, 2014 01:02
- 1 Respostas
- 4343 Exibições
- Última mensagem por adauto martins

Sex Out 17, 2014 12:39
Cálculo: Limites, Derivadas e Integrais
-
- [Integral] Integral funçao trigonometrica
por ewald » Qua Ago 17, 2011 22:33
- 2 Respostas
- 2843 Exibições
- Última mensagem por ewald

Qui Ago 18, 2011 00:54
Cálculo: Limites, Derivadas e Integrais
-
- [Integral] Integral funçao trigonometrica
por ewald » Sáb Ago 20, 2011 17:20
- 2 Respostas
- 2866 Exibições
- Última mensagem por LuizAquino

Dom Ago 21, 2011 21:14
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.