por inkz » Ter Nov 20, 2012 01:12
pessoal, estou resolvendo provas antigas para me preparar para a p1 de cálculo 2, porém, não tenho as respostas. podem me ajudar, só conferindo se o raciocínio está correto?
2) UMA PARTICULA MOVE-SE NO SENTIDO HORÁRIO SOBRE UM CÍRCULO DE CENTRO EM (1,1) E RAIO 2, COM VELOCIDADE ESCALAR CONSTANTE IGUAL A 6. DETERMINE UMA FUNÇÃO CUJA TRAJETÓRIA DESCREVE O MOVIMENTO DA PARTÍCULA.
minha tentativa:
parametrização de um círculo com centro em (0,0) e raio 1:
w(t) = (cost, sent)
parametrização de um círculo com centro em (0,0) e raio 2:
w(t) = (2cost, 2sent)
parametrização de um círculo com centro em (1,1) e raio 2:
w(t) = (1+2cost, 1+2sent)
parametrização de um círculo com centro em (1,1) e raio 2 e que descreva um movimento horário:
w(t) = (1+2sent,1+2cost)
e para mim seria essa a resposta..
mas eu nem utilizei o dado que foi dado, de que a velocidade escalar é constante e igual a 6.
sei que a derivada da trajetória é a velocidade instantânea, e que a norma dessa derivada, || v || é a velocidade escalar. mas como eu deveria ter usado esse dado? tá tudo errado ou o que? me ajudem, por favor
será que seria:
w(t) = (1+2sen(6t),1+2cos(6t))??
como vocês resolveriam ele? :p
-
inkz
- Usuário Dedicado

-
- Mensagens: 26
- Registrado em: Ter Nov 20, 2012 01:07
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia
- Andamento: cursando
por MarceloFantini » Ter Nov 20, 2012 01:28
Assuma que o parâmetro da curva será

, assim teremos

.
Na sua parametrização ela começa em

, ou seja, no topo da circunferência. Isto não faz tanta diferença mas é interessante perceber.
Derivando temos

.
Calculando o módulo e igualando a 6 segue

,
assim

. Existe uma resposta negativa para

, mas isto significaria reverter a orientação novamente, o que não queremos, portanto descartei-a.
Finalmente, a parametrização pedida é

.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por inkz » Ter Nov 20, 2012 02:01
MarceloFantini escreveu:Assuma que o parâmetro da curva será

, assim teremos

.
Caro MarceloFantini, não entendi o porque do parâmetro ser kt, e não t..
Digo, entendi tudo que foi feito ali, mas o que te fez pensar em usar kt?
Obrigado, novamente!!
-
inkz
- Usuário Dedicado

-
- Mensagens: 26
- Registrado em: Ter Nov 20, 2012 01:07
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia
- Andamento: cursando
por MarceloFantini » Ter Nov 20, 2012 02:15
A idéia por trás de usar

ao invés de

foi que ao derivar poderíamos ter uma constante a mais multiplicando o seno e o cosseno de tal forma que a velocidade se alterasse.
De forma mais genérica, o que determina a velocidade de circunferência é o coeficiente do parâmetro.
Tomando

, temos que

e assim

.
Da maneira como você parametrizou está assumido implicitamente que a velocidade da circunferência, a menos do raio, é 1.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por inkz » Ter Nov 20, 2012 02:29
oh, entendi.. então eu deveria possuir o prévio conhecimento de que o que determina a velocidade da circunf é o coef. do parâmetro, certo? ou havia algum jeito de se chegar nisso, mesmo sem conhecer isso?
agradeço novamente, pelas respostas e pela ajuda!
-
inkz
- Usuário Dedicado

-
- Mensagens: 26
- Registrado em: Ter Nov 20, 2012 01:07
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia
- Andamento: cursando
por inkz » Ter Nov 20, 2012 11:53
bom, se MarceloFantini não sabe outro jeito, posso afirmar que não existe outro modo de se resolver hahahah
tudo bem então, muito obrigado pela ajuda amigo!!!
-
inkz
- Usuário Dedicado

-
- Mensagens: 26
- Registrado em: Ter Nov 20, 2012 01:07
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- PARAMETRIZAÇÃO DE CURVAS
por sasuyanli » Sáb Out 26, 2013 12:14
- 1 Respostas
- 3785 Exibições
- Última mensagem por e8group

Dom Nov 03, 2013 14:31
Cálculo: Limites, Derivadas e Integrais
-
- [CURVAS] Parametrização de elipse e vetores tangentes
por inkz » Ter Nov 20, 2012 04:43
- 2 Respostas
- 2646 Exibições
- Última mensagem por inkz

Qua Nov 21, 2012 03:25
Cálculo: Limites, Derivadas e Integrais
-
- trajetorias ortogonais.
por manolo223 » Sáb Nov 26, 2011 15:26
- 1 Respostas
- 3838 Exibições
- Última mensagem por LuizAquino

Dom Nov 27, 2011 18:40
Cálculo: Limites, Derivadas e Integrais
-
- Trajetórias ortogonais a familia a 1 parametro
por jearaujo01 » Qui Mar 03, 2016 16:27
- 4 Respostas
- 2164 Exibições
- Última mensagem por adauto martins

Qua Mar 09, 2016 16:58
Cálculo: Limites, Derivadas e Integrais
-
- Cálculo - Parametrização
por Feliperpr » Ter Abr 24, 2012 21:14
- 12 Respostas
- 7147 Exibições
- Última mensagem por Feliperpr

Ter Abr 24, 2012 22:18
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.