• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Calculo da derivada

Calculo da derivada

Mensagempor Netolucena » Ter Nov 06, 2012 15:17

ola pessoal agradeço as dicas que vocês todos nos passam, e estou aqui para pedir uma direção com a seguinte derivada , por conta da greve o professor não deu aula e está pedindo um trabalho com algumas coisas assim e não estamos com monitores dai estou meio que sem direção:
g(t) = \frac{t{e}^{2t}}{ln(3t+1)}

posso dizer que ela é

t{e}^{2t}{ln(3t+1)}^{-1}

e fazer

t{e}^{2t}({ln(3t+1)}^{-1})' + (t{e}^{2t})'{ln(3t+1)}^{-1}

ou é errado :s

se sim como deriva esse log ai ?
Netolucena
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Seg Fev 06, 2012 14:41
Formação Escolar: GRADUAÇÃO
Área/Curso: técnico em construção de edifícios
Andamento: cursando

Re: Calculo da derivada

Mensagempor MarceloFantini » Ter Nov 06, 2012 15:35

Sim, está correto o que você escreveu. Se quiser deixar mais claro, escreva g(t) = t e^{2t} (\ln (3t+1))^{-1}.

Para derivar \ln(3t+1) use a regra da cadeia: as funções são f(t) = \ln t e h(t) = 3t+1. Veja que \ln (3t+1) = f(h(t)), e aplicando a regra da cadeia segue que (\ln (3t+1))' = \frac{1}{3t+1} \cdot 3.

Não se esqueça que em (t e^{2t})' você tem uma regra do produto e depois uma regra da cadeia em e^{2t}.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Calculo da derivada

Mensagempor Netolucena » Ter Nov 06, 2012 16:09

MarceloFantini escreveu:Sim, está correto o que você escreveu. Se quiser deixar mais claro, escreva g(t) = t e^{2t} (\ln (3t+1))^{-1}.

Para derivar \ln(3t+1) use a regra da cadeia: as funções são f(t) = \ln t e h(t) = 3t+1. Veja que \ln (3t+1) = f(h(t)), e aplicando a regra da cadeia segue que (\ln (3t+1))' = \frac{1}{3t+1} \cdot 3.

Não se esqueça que em (t e^{2t})' você tem uma regra do produto e depois uma regra da cadeia em e^{2t}.


no caso como ln(3t+1) está elevado a -1 me dá

- \frac{3}{(3t+1){ln(3t+1)}^{2}}

não seria ? *-)
Netolucena
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Seg Fev 06, 2012 14:41
Formação Escolar: GRADUAÇÃO
Área/Curso: técnico em construção de edifícios
Andamento: cursando

Re: Calculo da derivada

Mensagempor MarceloFantini » Ter Nov 06, 2012 16:33

Sim, é isto mesmo. Eu só mostrei como derivar \ln(3t+1), mas falta a outra regra da cadeia.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Calculo da derivada

Mensagempor e8group » Ter Nov 06, 2012 16:34

Netolucena , para você check sua derivada , utilize o site wolfram alpha . Ele fornece o resultado e a solução completa . Por exemplo , digite lá : Derivative of ( ln( 3t +1) ) e pressione " ENTER " do seu teclado . Logo aparacerá o resultado , a direita do mesmo , há uma opção " step by step solution " , isto levará vc a solução completa .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Calculo da derivada

Mensagempor Netolucena » Ter Nov 06, 2012 17:03

Obrigado por toda ajuda pessoal . . .
Netolucena
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Seg Fev 06, 2012 14:41
Formação Escolar: GRADUAÇÃO
Área/Curso: técnico em construção de edifícios
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}