• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivadas

Derivadas

Mensagempor manuela » Qua Out 31, 2012 15:24

Seja F(u,v)= f(u+v, u-v) com f(2,0)= 1, \frac{\partial f}{\partial x} (2,0)= -1, \frac{\partial f}{\partial y} (2,0)= 2, \frac{\partial ^2 f}{\partial x^2} (2,0)= 1, \frac{\partial ^2 f}{\partial y^2} (2,0)= 2, \frac{\partial ^2 f}{\partial x \partial y} (2,0)= \frac{\partial ^2 f}{\partial y \partial x} (2,0) = 3.
Calcule \frac{\partial F}{\partial v} (1,1), \frac{\partial ^2 F}{\partial u \partial v} (1,1) e \frac{\partial ^2 F}{\partial v^2} (1,1).


Não estou conseguindo resolver, alguém pode me ajudar?
manuela
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qui Out 18, 2012 19:52
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Derivadas

Mensagempor young_jedi » Qua Out 31, 2012 21:38

veja que

f(x,y)=f(u+v,u-v)

ou seja

x=u+v

e

y=u-v

dai tiramos as derivadas parciais

\frac{\partial x}{\partial u}=1,\frac{\partial x}{\partial v}=1,\frac{\partial u}{\partial u}=1,\frac{\partial y}{\partial v}=-1

portanto

\frac{\partial F(1,1)}{\partial v}=\frac{\partial f}{\partial x}(2,0).\frac{\partial x}{\partial v}}(1,1)+\frac{\partial f}{\partial y}(2,0).\frac{\partial y}{\partial v}}(1,1)

substituindo os valores

\frac{\partial F(1,1)}{\partial v}=(-1).1+2.(-1)=-3

para a segunda parte

\frac{\partial^2 F(1,1)}{\partial v\partial u}=\left(\frac{\partial^2 f}{\partial x^2}(2,0).\frac{\partial x}{\partial u}}(1,1)+
\frac{\partial^2f}{\partial x.\partial y}(2,0).\frac{\partial y}{\partial u}(1,1)\right).\frac{\partial x}{\partial v}(1,1)+\frac{\partial f}{\partial x}(2,0).\frac{\partial^2x}{\partial v\partial u}(1,1)+
\\
\left(\frac{\partial^2 f}{\partial y \partial x}(2,0).\frac{\partial x}{\partial u}}(1,1)+
\frac{\partial^2f}{\partial y^2}(2,0).\frac{\partial y}{\partial u}(1,1)\right).\frac{\partial y}{\partial v}(1,1)+\frac{\partial f}{\partial y}(2,0).\frac{\partial^2y}{\partial v\partial u}(1,1)

substituindo os valores voce encontra a resposta
e tente fazer o terceiro item
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?