por KleinIll » Qua Out 31, 2012 15:01
![\lim_{x \rightarrow1} \left({x}^{3} - 1 \right)\left[ sen(\frac{1}{x - 1}) + cos(\frac{3}{x}) + 10 \right] \lim_{x \rightarrow1} \left({x}^{3} - 1 \right)\left[ sen(\frac{1}{x - 1}) + cos(\frac{3}{x}) + 10 \right]](/latexrender/pictures/0449cfe7dc25ebd58a0267e67f5fb21a.png)
Alguém pode explicar como resolver?
Reposta: 0
??? ?? ? ????, ? ? ??????.
-

KleinIll
- Usuário Dedicado

-
- Mensagens: 46
- Registrado em: Qua Out 31, 2012 14:17
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Engenharia Química
- Andamento: formado
por young_jedi » Qua Out 31, 2012 20:33
temos que para qualquer valor de x a expressção nos temos certeza que

esta entre -1 e 1 e

também ou seja:


ou seja para quaquer valor de x maior que 1
![(x^3-1)(-1-1+10)<(x^3-1)\left[sen\left(\frac{1}{1-x}\right)+cos\left(\frac{3}{x}\right)+10\right] (x^3-1)(-1-1+10)<(x^3-1)\left[sen\left(\frac{1}{1-x}\right)+cos\left(\frac{3}{x}\right)+10\right]](/latexrender/pictures/3ccca9e15f643a1a27c6b4bd6e543073.png)
e
![(x^3-1)\left[sen\left(\frac{1}{1-x}\right)+cos\left(\frac{3}{x}\right\rihgt)+10\right]<(x^3-1)(1+1+10) (x^3-1)\left[sen\left(\frac{1}{1-x}\right)+cos\left(\frac{3}{x}\right\rihgt)+10\right]<(x^3-1)(1+1+10)](/latexrender/pictures/2972b20aca552558f59a759654ffac28.png)
ou seja
para valores de x>1 nos temos
![(x^3-1)8<(x^3-1)\left[sen\left(\frac{1}{1-x}\right)+cos\left(\frac{3}{x}\right\rihgt)+10\right]<(x^3-1)12 (x^3-1)8<(x^3-1)\left[sen\left(\frac{1}{1-x}\right)+cos\left(\frac{3}{x}\right\rihgt)+10\right]<(x^3-1)12](/latexrender/pictures/3018932e7c26731cb9579297db5b41c8.png)
mais nos temos que

e

então pelo teorema do confronto
![\lim_{x\rightarrow1_+}(x^3-1)\left[sen\left(\frac{1}{1-x}\right)+cos\left(\frac{3}{x}\right\rihgt)+10\right]=0 \lim_{x\rightarrow1_+}(x^3-1)\left[sen\left(\frac{1}{1-x}\right)+cos\left(\frac{3}{x}\right\rihgt)+10\right]=0](/latexrender/pictures/d9217826124b7fe33f78e944101c0b6e.png)
de forma semelhante nos temos que para x<1
![(x^3-1)(-1-1+10)>(x^3-1)\left[sen\left(\frac{1}{1-x}\right)+cos\left(\frac{3}{x}\right)+10\right] (x^3-1)(-1-1+10)>(x^3-1)\left[sen\left(\frac{1}{1-x}\right)+cos\left(\frac{3}{x}\right)+10\right]](/latexrender/pictures/32be94d1169153e340e7635301a96d72.png)
e
![(x^3-1)\left[sen\left(\frac{1}{1-x}\right)+cos\left(\frac{3}{x}\right\rihgt)+10\right]>(x^3-1)(1+1+10) (x^3-1)\left[sen\left(\frac{1}{1-x}\right)+cos\left(\frac{3}{x}\right\rihgt)+10\right]>(x^3-1)(1+1+10)](/latexrender/pictures/cf12410ce0a4b8d2aea3818037e0e03b.png)
ou seja
para valores de x<1 nos temos
![(x^3-1)8>(x^3-1)\left[sen\left(\frac{1}{1-x}\right)+cos\left(\frac{3}{x}\right\rihgt)+10\right]>(x^3-1)12 (x^3-1)8>(x^3-1)\left[sen\left(\frac{1}{1-x}\right)+cos\left(\frac{3}{x}\right\rihgt)+10\right]>(x^3-1)12](/latexrender/pictures/4738bfdafd367345f9ec1adc204a2b31.png)
mais nos temos que

e

então pelo teorema do confronto
![\lim_{x\rightarrow1_-}(x^3-1)\left[sen\left(\frac{1}{1-x}\right)+cos\left(\frac{3}{x}\right\rihgt)+10\right]=0 \lim_{x\rightarrow1_-}(x^3-1)\left[sen\left(\frac{1}{1-x}\right)+cos\left(\frac{3}{x}\right\rihgt)+10\right]=0](/latexrender/pictures/d56a1197e9cfc76635d51b729ef79f67.png)
se os limites laterais existem e ambos são iguais a zero então o limite é igual a zero
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por e8group » Qua Out 31, 2012 20:34
Desconsidere , já foi respondido .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Limite: Cosseno(x) e Seno(x) com X tendendo a infinito
por lucasguilherme2 » Qui Mai 24, 2012 11:49
- 3 Respostas
- 44252 Exibições
- Última mensagem por LuizAquino

Ter Mai 29, 2012 11:54
Cálculo: Limites, Derivadas e Integrais
-
- Seno e Cosseno de X??
por Leone de Paula » Ter Jul 13, 2010 00:28
- 1 Respostas
- 4552 Exibições
- Última mensagem por Tom

Ter Jul 13, 2010 00:43
Geometria Plana
-
- Lei do seno e cosseno
por renataf » Sex Dez 03, 2010 11:06
- 7 Respostas
- 18527 Exibições
- Última mensagem por Lorettto

Sáb Dez 11, 2010 01:17
Trigonometria
-
- Seno e Cosseno
por karen » Qua Mai 16, 2012 22:20
- 1 Respostas
- 3622 Exibições
- Última mensagem por joaofonseca

Qui Mai 17, 2012 08:51
Trigonometria
-
- Seno e Cosseno
por Malorientado » Sáb Ago 18, 2012 17:55
- 1 Respostas
- 2662 Exibições
- Última mensagem por MarceloFantini

Sáb Ago 18, 2012 19:33
Trigonometria
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.