• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Calculo de Função vetorial

Calculo de Função vetorial

Mensagempor cristian9192 » Sex Out 26, 2012 15:18

Tenho a equação cartesiana da curva 12x^{2}=-(y+z)^{2}+24 ; z=12 e tenho que obter a equação vetorial.
O contrario em outros execício eu já tinha feito mais de cartesiana para vetorial não entendi como se faz.
Resposta: r(t)= (\sqrt[2]{2}cos(t))i+(\sqrt[2]{24}sent -1)j+12 k
se alguém poder me ajudar.
cristian9192
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Sex Out 19, 2012 02:13
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Calculo de Função vetorial

Mensagempor young_jedi » Sex Out 26, 2012 16:21

pelas equações dadas voce ja sabe que z=12, portanto substituindo na outra equação

12x^2=-(y+12)^2+24

12x^2+(y+12)^2=24

\frac{x^2}{2}+\frac{(y+12)^2}{24}=1

\left(\frac{x}{\sqrt2}\right)^2+\left(\frac{y+12}{\sqrt{24}}\right)^2=1

mais das relações trigonometricas nos sabemos que

cos^2(t)+sen^2(t)=1

sendo assim

\begin{cases}\frac{x}{\sqrt2}=cos(t)\\ \frac{y+12}{\sqrt{24}}=sen(t)\\z=12\end{cases}

dai tiramos

\begin{cases}x=\sqrt2 \cos(t)\\y=\sqrt{24}sen(t)-12\\z=12\end{cases}
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}