• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Criterio da Razão,Ajuda com erro simples

Criterio da Razão,Ajuda com erro simples

Mensagempor staltux » Seg Out 25, 2010 14:54

bom pessoal, meu problema nem é tanto quanto ao criterio da razão propriamente dito, e sim com a matematica basica envolvida no meio...empaquei logo no começo, vou mostrar aqui as unicas coisas que consegui fazer...

O exercicio pede para dizer se converge(L<1) ou diverge(L>1).

\sum_{n=1}^{\propto} frac{{4}^{n}}{{n}^{2}}

entãm tentei deixar como pede a formula:

\lim_{n\rightarrow\propto} \left| \frac{an+1}{an} \right| = L

ficando:
\frac{\frac{{4}^{n+1}}{{(n+1)}^{2}}}{\frac{{4}^{n}}{{n}^{2}}}

entam fiz dividendo X inverso do divisor:

\frac{{4}^{n+1}}{{(n+1)}^{2}}  \frac{{n}^{2}}{{4}^{n}}

e é ai que o bixo pego pro meu lado, as unicas informações que sei é que {4}^{n+1} =  {4}^{n} . {4}^{1}
o que não me ajudou em nada, eu até pensei em fazer a parter de produtos notaveis do primeiro grupo, mas só piorou.
fica aqui onde chegeui com produtos notaveis:

\frac{{4}^{n+1}}{{n}^{2}+2n+1}  \frac{ {n}^{2}  }{   {4}^{n} }

eu fiz besteira pro meio do caminho ou não? se não, como continuo,pois se aplicar o limite agora não vai funcionar.
staltux
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Seg Out 25, 2010 14:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: cursando

Re: Criterio da Razão,Ajuda com erro simples

Mensagempor andrefahl » Sex Out 29, 2010 12:59

Cara, eu acho que vc chegou bem perto

repare só:

\frac{4^n^+^1}{(n^2 +2n +1)}\frac{n^2}{4^n} = \frac{ 4^n 4^1}{(n^2 +2n +1)}\frac{n^2}{4^n}

Agira o 4^n cancela com o 4^n ficando o seguinte

\frac{4 n^2}{(n^2 +2n +1)}

para calcular o limite divide tudo pela maior potencia

\Rightarrow  \frac{ \frac {4n^2}{n^2}}{\frac{n^2}{n^2} + \frac{2n}{n^2} + \frac{1}{n^2}} = \frac{4}{1 + \frac{2}{n} + \frac{1}{n^2}}

agora eh só calcular o limite que resulta em 4 =)

dai o limite é maior que 1
andrefahl
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 36
Registrado em: Qui Out 28, 2010 18:05
Formação Escolar: GRADUAÇÃO
Área/Curso: Física - UNICAMP
Andamento: cursando

Re: Criterio da Razão,Ajuda com erro simples

Mensagempor staltux » Sex Out 29, 2010 13:23

muito obrigado!
é por isso que o meu professor vive falando que agente não erra analise matematica, agente erra 7ª serie :oops:
eu simplesmente ignorei o fato de que se podia cortar os {4}^{n}.
Burro burro burro, da 0 pra ele :lol:
staltux
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Seg Out 25, 2010 14:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59