• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Criterio da Razão,Ajuda com erro simples

Criterio da Razão,Ajuda com erro simples

Mensagempor staltux » Seg Out 25, 2010 14:54

bom pessoal, meu problema nem é tanto quanto ao criterio da razão propriamente dito, e sim com a matematica basica envolvida no meio...empaquei logo no começo, vou mostrar aqui as unicas coisas que consegui fazer...

O exercicio pede para dizer se converge(L<1) ou diverge(L>1).

\sum_{n=1}^{\propto} frac{{4}^{n}}{{n}^{2}}

entãm tentei deixar como pede a formula:

\lim_{n\rightarrow\propto} \left| \frac{an+1}{an} \right| = L

ficando:
\frac{\frac{{4}^{n+1}}{{(n+1)}^{2}}}{\frac{{4}^{n}}{{n}^{2}}}

entam fiz dividendo X inverso do divisor:

\frac{{4}^{n+1}}{{(n+1)}^{2}}  \frac{{n}^{2}}{{4}^{n}}

e é ai que o bixo pego pro meu lado, as unicas informações que sei é que {4}^{n+1} =  {4}^{n} . {4}^{1}
o que não me ajudou em nada, eu até pensei em fazer a parter de produtos notaveis do primeiro grupo, mas só piorou.
fica aqui onde chegeui com produtos notaveis:

\frac{{4}^{n+1}}{{n}^{2}+2n+1}  \frac{ {n}^{2}  }{   {4}^{n} }

eu fiz besteira pro meio do caminho ou não? se não, como continuo,pois se aplicar o limite agora não vai funcionar.
staltux
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Seg Out 25, 2010 14:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: cursando

Re: Criterio da Razão,Ajuda com erro simples

Mensagempor andrefahl » Sex Out 29, 2010 12:59

Cara, eu acho que vc chegou bem perto

repare só:

\frac{4^n^+^1}{(n^2 +2n +1)}\frac{n^2}{4^n} = \frac{ 4^n 4^1}{(n^2 +2n +1)}\frac{n^2}{4^n}

Agira o 4^n cancela com o 4^n ficando o seguinte

\frac{4 n^2}{(n^2 +2n +1)}

para calcular o limite divide tudo pela maior potencia

\Rightarrow  \frac{ \frac {4n^2}{n^2}}{\frac{n^2}{n^2} + \frac{2n}{n^2} + \frac{1}{n^2}} = \frac{4}{1 + \frac{2}{n} + \frac{1}{n^2}}

agora eh só calcular o limite que resulta em 4 =)

dai o limite é maior que 1
andrefahl
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 36
Registrado em: Qui Out 28, 2010 18:05
Formação Escolar: GRADUAÇÃO
Área/Curso: Física - UNICAMP
Andamento: cursando

Re: Criterio da Razão,Ajuda com erro simples

Mensagempor staltux » Sex Out 29, 2010 13:23

muito obrigado!
é por isso que o meu professor vive falando que agente não erra analise matematica, agente erra 7ª serie :oops:
eu simplesmente ignorei o fato de que se podia cortar os {4}^{n}.
Burro burro burro, da 0 pra ele :lol:
staltux
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Seg Out 25, 2010 14:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: