• Anúncio Global
    Respostas
    Exibições
    Última mensagem

derivada dQ/dL

derivada dQ/dL

Mensagempor jmario » Seg Jul 26, 2010 17:15

Partindo da equação
\frac{{Q}^{6}}{{2L}^{2}}+L

como se chega nessa derivada
\frac{dQ}{dL}=-\frac{{Q}^{6}}{{L}^{3}}+1

Por que fica negativo e por que e se chega nesse resultado?

E essaq derivada também eu não consigo chegar nela
partindo dessa equação \frac{3}{2}Q+\frac{1}{6Q}
como se chega nessa \frac{3}{2}-\frac{1}{{6Q}^{2}}

alguém pode me ajudar?

Grato
Mario
jmario
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Qui Abr 15, 2010 12:23
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: economia
Andamento: formado

Re: derivada dQ/dL

Mensagempor MarceloFantini » Ter Jul 27, 2010 00:45

\frac{Q^2}{2L^2} + L = \frac{Q^6 \cdot L^{-2}}{2} + L

\frac{dQ}{dL} = \frac{1}{2} \cdot Q^6 \cdot (-2)L^{-3} + 1L^0 = - Q^6 \cdot L^{-3} + 1
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: derivada dQ/dL

Mensagempor Loretto » Ter Jul 27, 2010 02:28

Partindo da sua equação, não dá pra chegar na derivada que você mencionou.
Usando a regra do quociente, podemos achar a sua derivada , observe :

[ Q^6/ 2l^2]' =  [6Q^5 * dQ/dL *2L^2 - Q^6*4L]/4L^4

Mas queremos a derivada de [Q^6/ 2L^2 + L] ; como a derivada de " L " é igual a " 1 " , teremos :

[ Q^6/ 2L² + L ]' =  [6Q^5 * dQ/dL *2L^2 - Q^6*4L]/4L^4 + 1

.................................x.....................................x..........................................x...............................

Lembre - se :

[ f(x)/g(x) ] = f'(x).g(x) - f(x).g'(x) / [ g(x) ] ²

.................................x.....................................x..........................................x................................
Na sua segunda questão, você precisa seguir a regra que postei acima, e assim teremos a derivada correta, pois você não pode usar a regra da potência em uma divisão. Use a regra do quociente !!!
Loretto
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Dom Jul 25, 2010 01:35
Formação Escolar: ENSINO MÉDIO
Área/Curso: exatas
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}