• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Como verifico esta afirmação? (integral)

Como verifico esta afirmação? (integral)

Mensagempor rafaelmtmtc » Dom Abr 18, 2010 19:41

\int_{}^{} \frac{1}{1+{x}^{2}} dx = arc tg x + K


grato pela atenção
rafaelmtmtc
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sáb Abr 18, 2009 18:08
Formação Escolar: GRADUAÇÃO
Área/Curso: lic/bac matematica
Andamento: cursando

Re: Como verifico esta afirmação? (integral)

Mensagempor Elcioschin » Seg Abr 19, 2010 14:15

Lembre-se que:

d(tgu) = sec²u*du
sec²u = 1 + tg²u

Fazendo x = tgu no seu problema teremos:

a) 1/(1 + x²) = 1/(1 + tg²u) = 1/sec²u

b) dx = d(tgu) ----> dx = sec²u*du

c)u = arctgx

Int[1/(1 + x²)*dx = Int[(1/sec²u)sec²udu] = Int[du] = u = arctgx + K
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: Como verifico esta afirmação? (integral)

Mensagempor rafaelmtmtc » Seg Abr 19, 2010 15:57

muito grato pela atenção Elcioschin, você não sabe o quanto me ajudou.

um abraço.
rafaelmtmtc
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sáb Abr 18, 2009 18:08
Formação Escolar: GRADUAÇÃO
Área/Curso: lic/bac matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.