por armando » Seg Dez 19, 2016 04:25
Olá a todos.
Alguém me pode dar uma ajuda com a seguinte integral dupla ?

Sei que o resultado é 128, mas não consigo chegar nele.
Antecipadamente grato
Armando
-
armando
- Usuário Dedicado

-
- Mensagens: 26
- Registrado em: Seg Abr 01, 2013 16:02
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por armando » Qua Dez 28, 2016 03:29
Olá, sou eu novamente.
Pelo que andei pesquisando deve-se começar a resolução das integrais de dentro para fora.

Resolvendo a integral interna

, numa calculadora TI-Nspire CX CAS, dá:

O WolframAlpha para a resolução da mesma começa por dizer:
Aplique o teorema fundamental de cálculo.
A antiderivada de


Avaliar a antiderivada dos limites e subtrair.
Mas como não estou inscrito, não mostra mais passos para além destes.
Alguém sabe como chegar até

. É que a integral desta expressão, com limites de
![[0,4] [0,4]](/latexrender/pictures/b839c0a45fd15dac69be08a4dbb0b7e3.png)
em relação a

eu sei como resolver de modo a chegar no valor 128.
Grato pela atenção
Amadeu
-
armando
- Usuário Dedicado

-
- Mensagens: 26
- Registrado em: Seg Abr 01, 2013 16:02
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por adauto martins » Qui Dez 29, 2016 13:10
![I=\int_{0}^{4}(\int_{x}^{3x}3.\sqrt[]{(16-{x}^{2})}dy)dx=\int_{0}^{4}3.\sqrt[]{(16-{x}^{2})}(\int_{x}^{3x}dy)dx= I=\int_{0}^{4}(\int_{x}^{3x}3.\sqrt[]{(16-{x}^{2})}dy)dx=\int_{0}^{4}3.\sqrt[]{(16-{x}^{2})}(\int_{x}^{3x}dy)dx=](/latexrender/pictures/6f1361319c3c013ae03420b84d039edf.png)
![3.\int_{0}^{4}\sqrt[]{(16-{x}^{2})}(3x-x)dx=3.\int_{0}^{4}2x.\sqrt[]{(16-{x}^{2})}dx... 3.\int_{0}^{4}\sqrt[]{(16-{x}^{2})}(3x-x)dx=3.\int_{0}^{4}2x.\sqrt[]{(16-{x}^{2})}dx...](/latexrender/pictures/379488ca8fbf2724ff527fef0aa1db67.png)
,faz-se
![u=16-2x...du=-2xdx\Rightarrow I=-3.\int_{0}^{4}u.\sqrt[]{u}du=3.\int_{4}^{0}u.\sqrt[]{u}du... u=16-2x...du=-2xdx\Rightarrow I=-3.\int_{0}^{4}u.\sqrt[]{u}du=3.\int_{4}^{0}u.\sqrt[]{u}du...](/latexrender/pictures/c09dfe85ca490b4be867ce632b78f9eb.png)
,agora é usar a integraçao por partes,pois chegou-se a uma integral do produto de duas funçoes
![u.\sqrt[]{u} u.\sqrt[]{u}](/latexrender/pictures/0e882785540ed8252f05ad69f2891f4a.png)
,cuja formula é dado por:

,termine-o...
sugestao:
![u.\sqrt[]{u}={u}^{2}/\sqrt[]{u}... u.\sqrt[]{u}={u}^{2}/\sqrt[]{u}...](/latexrender/pictures/732940b1743fd5ffe64b9f680ac30805.png)
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
por pedro22132938 » Sex Dez 30, 2016 01:43
Como voce está integrando em y e sua função só depende de x, ela sai da integral como um constante
-
pedro22132938
- Usuário Ativo

-
- Mensagens: 10
- Registrado em: Dom Mar 22, 2015 17:11
- Formação Escolar: GRADUAÇÃO
- Área/Curso: EAD
- Andamento: formado
por adauto martins » Sex Dez 30, 2016 15:44
é isso colega,vc integra mesmo q.


como em derivadas parciais tbem...
uma peq. correçao na integral q. fiz e faremos o restante do exercicio:
na soluçao anterior chegamos em:
![I=3.\int_{0}^{4}2x.\sqrt[]{(16-{x}^{2})}dx I=3.\int_{0}^{4}2x.\sqrt[]{(16-{x}^{2})}dx](/latexrender/pictures/a8e7d090940f23c44c7fcc66ca4b005a.png)
,fizemos
![u=16-{x}^{2}\Rightarrow du=-2xdx...I=-3.(\int_{0}^{4}\sqrt[]{(16-{x}^{2})}(-2xdx)=-3.\int_{0}^{4}\sqrt[]{u}du=-2.{u}^{3/2}[0,4]= u=16-{x}^{2}\Rightarrow du=-2xdx...I=-3.(\int_{0}^{4}\sqrt[]{(16-{x}^{2})}(-2xdx)=-3.\int_{0}^{4}\sqrt[]{u}du=-2.{u}^{3/2}[0,4]=](/latexrender/pictures/1aba37e376dd9b1f7d2f80e5e530fa08.png)
![-2.(\sqrt[]{(16-{x}^{2})}[0,4]=-2.(-64)=128... -2.(\sqrt[]{(16-{x}^{2})}[0,4]=-2.(-64)=128...](/latexrender/pictures/937203adc19d19c08888db852f4d25c0.png)
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
por armando » Ter Jan 03, 2017 01:06
Boa noite a todos.
A minha dificuldade era nesta 1ª etapa, até chagar a:

![\int\limit_{x}^{3x}(3\sqrt{16-x^2}) = (3\sqrt{16-x^2})y]^{3x}_{x} = 3x(3\sqrt{16-x^2}) - x(3\sqrt{16-x^2}) =\\
= (3x-x)\sqrt{16-x^2} = 2x(3\sqrt{16-x^2}) = 6x\sqrt{16-x^2} \int\limit_{x}^{3x}(3\sqrt{16-x^2}) = (3\sqrt{16-x^2})y]^{3x}_{x} = 3x(3\sqrt{16-x^2}) - x(3\sqrt{16-x^2}) =\\
= (3x-x)\sqrt{16-x^2} = 2x(3\sqrt{16-x^2}) = 6x\sqrt{16-x^2}](/latexrender/pictures/80fea566883b371cbf87b7fe85871fa8.png)
Com a solução desta primeira etapa, avancei para a segunda do seguinte modo :
Uma vez obtida a integral:

Fazendo



Passando o inteiro

para fora da integral, e a variável

que estava multiplicando por ele para junto de

, vamos ter:

e deste modo podemos enunciar:
![6\int\limit_{0}^{\limit{4}}\sqrt{u}(-\frac{du}{2})\;\,=\;\,6\int\limit_{0}^{\limit{4}}{u}^{\frac{1}{2}}(-\frac{du}{2})\;\,=\;\,-\frac{6}{2}\int\limit_{0}^{\limit{4}}u^{\frac{1}{2}}du\;\,=\;\,-3\cdot\frac{u^{\frac{3}{2}}}{\frac{3}{2}}\,\,=\\
=\,\,\,-3\cdot\frac{2}{3}\cdot u^{\frac{3}{2}}\;\,=\;\,-\frac{6}{3}\cdot u^{\frac{3}{2}}=\,-2\cdot u^{\frac{3}{2}}\,=-2(16-x^2)^{\frac{3}{2}}=\,-2\sqrt{(16-x^2)^3}[{_{_0}^{^4}}=\\
=\,\,\,[-2\sqrt{(16-4^2)^3}]\,-\,[-2\sqrt{(16-0^2)^3}]\;\;=\;\,(0)\,\,-\,\,(-128)\;=\;\box{128} 6\int\limit_{0}^{\limit{4}}\sqrt{u}(-\frac{du}{2})\;\,=\;\,6\int\limit_{0}^{\limit{4}}{u}^{\frac{1}{2}}(-\frac{du}{2})\;\,=\;\,-\frac{6}{2}\int\limit_{0}^{\limit{4}}u^{\frac{1}{2}}du\;\,=\;\,-3\cdot\frac{u^{\frac{3}{2}}}{\frac{3}{2}}\,\,=\\
=\,\,\,-3\cdot\frac{2}{3}\cdot u^{\frac{3}{2}}\;\,=\;\,-\frac{6}{3}\cdot u^{\frac{3}{2}}=\,-2\cdot u^{\frac{3}{2}}\,=-2(16-x^2)^{\frac{3}{2}}=\,-2\sqrt{(16-x^2)^3}[{_{_0}^{^4}}=\\
=\,\,\,[-2\sqrt{(16-4^2)^3}]\,-\,[-2\sqrt{(16-0^2)^3}]\;\;=\;\,(0)\,\,-\,\,(-128)\;=\;\box{128}](/latexrender/pictures/a8f9e8458b49464aceb6ffb77c87cba7.png)
Creio não ter cometido nenhum erro. Se por acaso o fiz, por favor, me corrijam.
Compreendi o vosso método.
Obrigado pela ajuda.
-
armando
- Usuário Dedicado

-
- Mensagens: 26
- Registrado em: Seg Abr 01, 2013 16:02
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Cálculo de Massa] - Integral Dupla
por Hardisk » Seg Mai 28, 2012 00:50
- 1 Respostas
- 2547 Exibições
- Última mensagem por LuizAquino

Seg Mai 28, 2012 17:50
Cálculo: Limites, Derivadas e Integrais
-
- Calculo de volume atravé de integral dupla
por maiquel » Qua Out 13, 2010 12:34
- 1 Respostas
- 7222 Exibições
- Última mensagem por armando

Sex Jan 06, 2017 04:14
Cálculo: Limites, Derivadas e Integrais
-
- Cálculo de integral dupla por coordenadas polares
por Fernandobertolaccini » Sex Jan 16, 2015 22:13
- 0 Respostas
- 1577 Exibições
- Última mensagem por Fernandobertolaccini

Sex Jan 16, 2015 22:13
Cálculo: Limites, Derivadas e Integrais
-
- Integral dupla
por DanielFerreira » Sex Mar 16, 2012 23:56
- 2 Respostas
- 2578 Exibições
- Última mensagem por DanielFerreira

Sáb Mar 17, 2012 19:11
Cálculo: Limites, Derivadas e Integrais
-
- Integral dupla - 2
por DanielFerreira » Dom Mar 18, 2012 12:44
- 5 Respostas
- 3931 Exibições
- Última mensagem por DanielFerreira

Sex Mar 23, 2012 22:34
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.