por bencz » Sex Mar 18, 2016 10:42
Estou estudando integração, e me deparei com o seguinte exercício:
Após pegar a variável u e sua derivada,

, eu coloco na integral, com os valores limites recalculados, mas eu não consigo entender o por que o

que esta fora do parenteses 'some' da integração, na proxima etapa onde eu iria colocar o

para ser integrado, eu já coloco mais o

.

Por que, sendo que, se eu tivesse que calcular a anti-derivada do

, eu deveria colocar na equação p/ ser calculada também ?
-
bencz
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Qui Jul 14, 2011 00:21
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por anselmojr97 » Dom Mar 20, 2016 17:09
Olá, Bencz.
Quando você faz

o próximo passo será achar o valor de

para substituir na integral, porque agora estará em função de

e não mais em função de

Então ficará:
![\[ \frac{du}{2x} \] = dx \[ \frac{du}{2x} \] = dx](/latexrender/pictures/2a20e8b8283ad295135ce3f45ce3e8d0.png)
Aí você substitui na Integral.

Como é tudo produto, você pode simplificar o

do numerador por o do denominador. Ficando assim:

Você pode passar a constante

para fora Integral:

Assim você pode desenvolver o restante da Integral.
(Caso tenha alguma duvida sobre o restante do desenvolvimento, é só falar.)
Espero ter ajudado.
Abraços.
"Felizes aqueles que se divertem com problemas que educam a alma e elevam o espírito". (Fenelon)
-
anselmojr97
- Usuário Ativo

-
- Mensagens: 10
- Registrado em: Qui Set 17, 2015 21:52
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Civil
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Endomorfismo e matriz anti simetrica
por matlearn » Dom Mar 20, 2011 23:40
- 0 Respostas
- 2362 Exibições
- Última mensagem por matlearn

Dom Mar 20, 2011 23:40
Geometria Analítica
-
- [Integral] Integração por parte...
por Jessica Seno » Dom Out 14, 2012 14:37
- 3 Respostas
- 1860 Exibições
- Última mensagem por DanielFerreira

Dom Out 28, 2012 17:17
Cálculo: Limites, Derivadas e Integrais
-
- [Integral] Integração por parte
por LAZAROTTI » Ter Out 23, 2012 10:33
- 1 Respostas
- 1165 Exibições
- Última mensagem por MarceloFantini

Ter Out 23, 2012 12:03
Cálculo: Limites, Derivadas e Integrais
-
- [Integral] Integração por partes
por bencz » Sex Abr 22, 2016 16:18
- 1 Respostas
- 3590 Exibições
- Última mensagem por nakagumahissao

Sáb Abr 23, 2016 23:33
Cálculo: Limites, Derivadas e Integrais
-
- [Integração por Partes] Integral indefinida...
por luiz_henriquear » Qui Dez 22, 2011 17:40
- 1 Respostas
- 3603 Exibições
- Última mensagem por LuizAquino

Qui Dez 22, 2011 21:58
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.