por leticiapires52 » Qua Nov 25, 2015 16:01
Encontre as dimensões de um cilindro circular reto de maior volume que pode ser inscrito em um cone circular reto com raio de 5 cm e altura de 12 cm.
-
leticiapires52
- Colaborador Voluntário

-
- Mensagens: 100
- Registrado em: Qua Fev 12, 2014 10:12
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em matemática
- Andamento: cursando
por adauto martins » Qui Nov 26, 2015 11:18
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Dimensões de um cilindro
por fcosta » Ter Nov 29, 2016 12:20
- 0 Respostas
- 3138 Exibições
- Última mensagem por fcosta

Ter Nov 29, 2016 12:20
Trigonometria
-
- [Volume de um cilindro circular reto]
por liahxs » Dom Ago 13, 2017 23:34
- 0 Respostas
- 4695 Exibições
- Última mensagem por liahxs

Dom Ago 13, 2017 23:34
Geometria Espacial
-
- Cilindro Circular Reto Inscrito em Cone
por OtavioBonassi » Ter Jul 12, 2011 18:29
- 1 Respostas
- 4101 Exibições
- Última mensagem por Adriano Tavares

Dom Jan 01, 2012 17:51
Geometria Espacial
-
- ME AJUDE POR FAVOR:Cilindro circular reto inscrito no cone
por netochaves » Sex Abr 05, 2013 14:32
- 0 Respostas
- 1699 Exibições
- Última mensagem por netochaves

Sex Abr 05, 2013 14:32
Cálculo: Limites, Derivadas e Integrais
-
- Cilindro circular reto inscrito num cone reto
por netochaves » Qui Abr 04, 2013 18:04
- 10 Respostas
- 6934 Exibições
- Última mensagem por netochaves

Qua Mai 01, 2013 16:31
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.