• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integrais] Integral dupla com módulo

[Integrais] Integral dupla com módulo

Mensagempor fabiocr93 » Ter Out 13, 2015 18:38

Olá. Estou com dúvida. Já vi outras resoluções por aqui e tentei seguir as solução adotadas mas não obtive êxito.
Este exercício é do Cálculo B, da Flemming, de número 2.L, da página 242.
Devo esboçar a região de integração e calcular a integral iterada seguinte:

\int_{0}^{1}\int_{-1}^{1}\left|x + y \right|dxdy

A solução dada pelo livro é 4/3.

O que fiz foi avaliar a região de integração e em seguida desenhar esta. Depois, avaliei a função módulo em questão e estabeleci os limites para os quais "o sinal troca".
Em seguida integrei para cada parte da função módulo e segui com a integral "de fora", mas obtive resposta 2. Tentei resolver pela HP 50g e obtive a resposta 1. A resposta está correta? Como devo resolver?
Segue imagem da minha resolução:
Imagem

No Wolfram Alpha eu obtive a resposta correta. O que assegura que o livro está certo:
http://www.wolframalpha.com/share/clip? ... gjieqlrff9
fabiocr93
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Ter Out 13, 2015 18:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil FEB-UNESP
Andamento: cursando

Re: [Integrais] Integral dupla com módulo

Mensagempor adauto martins » Sex Out 16, 2015 18:22

\left|x+y \right|=x+y...se x+y\succeq 0
\left|x+y \right|=-(x+y)...se x+y \prec 0
I=\int_{0}^{1}(\int_{-1}^{1}\left|x+y \right|dx)dy=I=\int_{0}^{1}(\int_{-1}^{-y}-(x+y)dx+\int_{-y}^{0}-(x+y)dx+\int_{0}^{1}(x+y)dx)dy==I=\int_{0}^{1}(-{x}^{2}-xy)[-1,-y]+(-{x}^{2}/2-xy)[-y,0])+({x}^{2}/2+xy[0,1])dy=
\int_{0}^{1}(-({-y})^{2}/2-(-y)y-({-1})^{2}/2-(-1)y)+(-({-y})^{2}/2-(-y)y+0+{1}^{2}/2+1.y+0)dy=\int_{0}^{1}(-{y}^{2}/2+{y}^{2}-1/2+y-{y}^{2}/2+{y}^{2}+1/2+y)dy=\int_{0}^{1}({y}^{2}+2y)dy={y}^{3}/3+{y}^{2})[0,1]=1/3+1=4/3...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: