por VenomForm » Qui Nov 14, 2013 11:21
Bom primeiramente gostaria de pedir desculpas pois não sei se este é o local certo para minha duvida.
Estou fazendo uma lista de exercícios para estudar quando me deparo com a seguinte questão:
Suponha que você esteja subindo um morro cujo formato é dado pela equação:

e você esteja no ponto de coordenadas (60;100;764). Em que direção você deve seguir inicialmente de modo a chegar no topo do morro?
Até onde eu sei preciso achar as derivadas parciais de X e de Y e após isto encontrar o vetor gradiente, ai não sei mais o que fazer.
-
VenomForm
- Usuário Ativo

-
- Mensagens: 14
- Registrado em: Qua Fev 27, 2013 14:25
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Bacharelado em Ciências da Computação
- Andamento: cursando
por xGoku » Qua Set 23, 2015 17:19
Tb não consigo resolver essa... alguém pode ajudar?
-
xGoku
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Dom Nov 23, 2014 21:28
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: cursando
por adauto martins » Qui Set 24, 2015 15:38
a direçao de maior crescemento de f´(x,y),é dado pela direçao do gradiente,qdo esse tem mesma direçao e sentido de seu vetor unitario,logo:
seja

,
![\left|u \right|=\sqrt[]{{cos\theta}^{2}+{sen\theta}^{2}}=1 \left|u \right|=\sqrt[]{{cos\theta}^{2}+{sen\theta}^{2}}=1](/latexrender/pictures/4076b0573ee8b6610941b3810525e147.png)
...logo podemos ter:

...

...

,
![\left|\nabla f(60,100) \right|=\sqrt[]{{(-1.2)}^{2}+{(-4)}^{2}}\simeq 4.18 \left|\nabla f(60,100) \right|=\sqrt[]{{(-1.2)}^{2}+{(-4)}^{2}}\simeq 4.18](/latexrender/pictures/a36f6f097716c4c54266035d54e28ba5.png)
...

...


...sera 73.5°N ou 16.5° SD...
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Plano tangente e vetor gradiente
por carolzinhag3 » Sáb Abr 15, 2017 23:38
- 0 Respostas
- 989 Exibições
- Última mensagem por carolzinhag3

Sáb Abr 15, 2017 23:38
Cálculo: Limites, Derivadas e Integrais
-
- [cálculo II] vetor gradiente e derivada direcional
por natanaelskt » Sex Nov 28, 2014 21:09
- 1 Respostas
- 1423 Exibições
- Última mensagem por adauto martins

Sáb Nov 29, 2014 12:13
Cálculo: Limites, Derivadas e Integrais
-
- [Calculo2: Derivada Parcial] Plano tg, Vetor Gradiente
por Claudio Parana » Qua Fev 05, 2014 20:06
- 0 Respostas
- 1137 Exibições
- Última mensagem por Claudio Parana

Qua Fev 05, 2014 20:06
Cálculo: Limites, Derivadas e Integrais
-
- [Aplicações do vetor gradiente] Aplicações das propriedades
por TheoFerraz » Sex Out 28, 2011 16:14
- 1 Respostas
- 3221 Exibições
- Última mensagem por LuizAquino

Sáb Out 29, 2011 11:16
Cálculo: Limites, Derivadas e Integrais
-
- [Gradiente - Cálculo 3] Dúvida exercício
por ferfer » Seg Ago 05, 2013 15:54
- 3 Respostas
- 1474 Exibições
- Última mensagem por temujin

Seg Ago 05, 2013 20:54
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.