• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Divergente, gradiente e rotacional.

Divergente, gradiente e rotacional.

Mensagempor Crisaluno » Qui Set 03, 2015 04:37

Estou com uma dúvida nessas 3 questões:
1°) Sejam f um escalar e F um campo vetorial quaisquer. Se existem as derivadas parciais provar: div(f F) = f [ div(F)] + [ grad(f)] * F
2°)Se r(vetor)= xi + yj + zk é o chamado vetor posição, provar:
a) div(r) = 3
b) rot(r) = 0
c)Nabla II r II = r / |r|
3°) define-se nabla^2 como operador Laplaciano.
a) definir nabla^2 através de derivadas parciais;
b) se f e g são funções escalares dotadas de derivadas parciais segundas, provar :
nabla*(nabla f )= nabla^2 f

Segue o gabarito com as respostas :

1°)div (F) = f [div (F)] + [ grad (f) ] * F...é verdadeira.
2°) a) div (r) =3 ; b) rot (r) = 0 ; c) Nabla |r|= r / |r|...verdadeira
3°)verdadeira..

obs: Estou tendo muita dificuldade de com esses exercícios. seria possível mostrar o passo a passo até o resultado?
Crisaluno
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Set 03, 2015 03:38
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecânica
Andamento: cursando

Re: Divergente, gradiente e rotacional.

Mensagempor adauto martins » Sáb Set 05, 2015 12:28

div(f.F)=\nabla .(f.F)=(\partial/\partial x)(F.f)+(\partial/\partial y)(f.F)+(\partial/\partial z)(f.F)..MEU EDITOR NAO ESTA FUNCIONANDO AQUI,MAS VAMOS LA NO JEITO Q. DER...
a)
div(f.F)=(D/x)(f.F)+(D/y)(f.F)+(D/z)(f.F),onde (D/x),(D/y),(D/z) sao as derivadas parciais em relaçao aos eixos x,y,z...
div(f.F)=(Df(x).F+DF(x).f)+(Df(y).F+DF(y).f)+(D(z)f+D(F(z))=f.(DF(x)+DF(y)+DF(z))+(Df(x)+Df(y)+Df(z))=f.div(F)+grad(f).F,aqui usei a regra da derivada do produto...
b)
r=(x,y,z)...div(r)=(D/x)r+(D/y)r+(D/z)=1+1+1=3
c)
rot(r)=produto vetrorial de r...olha sem o editor,te fala nuum da...espero q. entensa ai o q. fiz...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: Divergente, gradiente e rotacional.

Mensagempor Crisaluno » Dom Set 06, 2015 02:08

Muito obrigado!!!Muito obrigado mesmo...conseg ui acompanhar sua resolução.
Crisaluno
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Set 03, 2015 03:38
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecânica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.