• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite com raíz cúbica

Limite com raíz cúbica

Mensagempor Rosi7 » Sex Ago 07, 2015 21:34

Gente não estou conseguindo fazer a multiplicação de forma correta, a questão é que mesmo fazendo de forma incorreta minha resposta está batendo com a do livro, pois sempre chego em um numero 1/infinito embaixo = 0, porém tem algo errado.. Eu sinto que tem algo, igual uma questão anterior que eu cortava tudo.. PS: Estou resolvendo o livro leithold por conta própria, não sei ao certo quantas vezes tentei fazer esta questão, mas foram vária e o máximo que chego é na resposta final zero. Embora eu não entendo o que faço na multiplicação, apenas estou usando (a^3-b^3) = a^2 + ab + b^2.

PS: Não posso usar derivada, estou em calculo I e só posso usa-lo na 3 unidade.. ou seja. Se alguém puder me ajudar, peço que seja no tradicional.

\lim_{-\infty}\sqrt[3]{{x}^{3} + x} - \sqrt[3]{{x}^{3} + 1}
Rosi7
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Sáb Mai 02, 2015 18:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Física
Andamento: cursando

Re: Limite com raíz cúbica

Mensagempor nakagumahissao » Sáb Ago 08, 2015 12:54

\lim_{x \rightarrow \infty}\sqrt[3]{{x}^{3} + x} - \sqrt[3]{{x}^{3} + 1}

Veja bem, não é possível usar derivadas neste caso porque o problema não trata de uma indefinição que possivelmente você verá num futuro próximo. Temos que trabalhar com essas raízes de outra forma.

Vamos usar a seguinte identidade:

a^2 - b^2 = (a-b)(a+b) \Rightarrow a-b = \frac{a^2 - b^2}{a + b}

Sendo que:

a = \sqrt{x^3 + x}

b = \sqrt{x^3 + 1}

Assim:

\lim_{x \rightarrow \infty} \sqrt[3]{{x}^{3} + x} - \sqrt[3]{{x}^{3} + 1} = \lim_{x \rightarrow \infty} \frac{\left(\sqrt[3]{{x}^{3} + x} \right)^{2} - \left(\sqrt[3]{{x}^{3} + 1} \right)^2}{\sqrt[3]{{x}^{3} + x} + \sqrt[3]{{x}^{3} + 1}} =

= \lim_{x \rightarrow \infty} \frac{\left(x\sqrt[3]{1 + \frac{x}{{x}^{3}}} \right)^{2} - \left(x\sqrt[3]{1 + \frac{1}{{x}^{3}}} \right)^2}{x\sqrt[3]{1 + \frac{x}{{x}^{3}}} + x\sqrt[3]{1 + \frac{1}{{x}^{3}}}} = \frac{x^2 - x^2}{x + x} = \frac{0}{2x} = 0

Lembrando que (Explicarei o que ocorreu somente com a primeira raiz cúbica para que entenda a linha acima):

\sqrt[3]{{x}^{3} + x} = \sqrt[3]{\frac{{x}^{3}}{{x}^{3}}({x}^{3} + x)} = \sqrt[3]{{x}^{3} \left(1 + \frac{x}{x^3} \right)}  =

= \sqrt[3]{{x}^{3} } \cdot \sqrt[3]{\left(1 + \frac{x}{x^3} \right)} = x\sqrt[3]{\left(1 + \frac{x}{x^3} \right)}

\blacksquare
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 386
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando

Re: Limite com raíz cúbica

Mensagempor Rosi7 » Seg Ago 10, 2015 13:22

Entendi onde é meu erro. Embaixo eu não repetia, fiz a regra do a² +ab + b² também.. Que confusão a minha!!!

Muitíssimo obrigada!!!!!!!!

Obs: Nakagumahissao, notei que você usou a²-b², posso usar isso? Sendo que tenho raiz cúbica o certo não seria a³-b³?
Rosi7
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Sáb Mai 02, 2015 18:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Física
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59