• Anúncio Global
    Respostas
    Exibições
    Última mensagem

problema de limites

problema de limites

Mensagempor juflamanto » Sex Ago 07, 2015 18:05

Estou tentando calcular um limite,porem travei em um certo ponto.
limite de x quando tende a -5 pela direita ((abs(3+2x-x^2)-32)/((x^2)+(3x)-10)
ja fatorei,mas nao consegui sair dessa parte -(x+1)(x-3)-32/(x-2)(x+5).
Aqui tem o link do Wolfram: http://www.wolframalpha.com/input/?i=li ... x%29-10%29
juflamanto
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sex Ago 07, 2015 17:55
Formação Escolar: GRADUAÇÃO
Área/Curso: fisica
Andamento: cursando

Re: problema de limites

Mensagempor nakagumahissao » Sáb Ago 08, 2015 12:18

\lim_{x\rightarrow {(-5)}^{+}} \frac{\left| 3 + 2x - x^2 \right| - 32}{x^2 + 3x - 10}

Temos aqui uma indefinição do tipo 0/0. Assim, aplicando L'Hôpital teremos:

\lim_{x\rightarrow {(-5)}^{+}} \frac{ \frac{d}{dx} \left(\left| 3 + 2x - x^2 \right| - 32\right)}{\frac{d}{dx}\left(x^2 + 3x - 10 \right)} = \lim_{x\rightarrow {(-5)}^{+}} \frac{\left|2 - 2x \right|}{2x + 3}

\frac{\left|2 - 2(-5) \right|}{2(-5) + 3} =  \frac{\left|2 + 10 \right|}{-10 + 3} = \frac{ \pm \sqrt{{12}^{2}}}{-7} = \frac{12}{7}

Foi escolhido o valor positivo porque vindo da direita esses valores são positivos. Experimente substituir x = 4 e verá que o resultado será positivo.
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 386
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}