por johnatta » Sex Jun 12, 2015 10:32
encontre todos os pontos sobre a curv x^2 + y^2 + xy=2 onde a inclinação da reta tangente é -1
-
johnatta
- Usuário Ativo

-
- Mensagens: 16
- Registrado em: Ter Abr 07, 2015 17:14
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por nakagumahissao » Sex Jun 12, 2015 14:52
johnatta,
Sempre que postar aqui, por favor, diga-nos o que já tentou fazer para que esta interatividade não seja somente para que você copie o que foi resolvido. Desta forma, nós aqui apenas estaremos resolvendo as questões para você sem que você aproveite alguma coisa. O objetivo deste site é fazer com que cada pessoa aprenda um pouco mais do que sabia antes. Então, por favor, sempre diga-nos por gentileza o que já tentou fazer para resolver o problema, caso contrário, poderá ficar sem ter a ajuda esperada.
Resolução:
Encontre todos os pontos sobre a curva x^2 + y^2 + xy=2 onde a inclinação da reta tangente é -1
Quando dizemos inclinação da reta tangente é -1, queremos dizer que:
[1]

No círculo trigonométrico, existem dois pontos onde isto ocorre: Nos segundos e quartos quadrantes onde:

ou múltiplos deles.
Sabendo-se disto, precisaremos encontrar a derivada de y com relação à y:



De [1], temos que:




Eu faço a diferença. E você?
Do Poema: Quanto os professores "fazem"?
De Taylor Mali
-
nakagumahissao
- Colaborador Voluntário

-
- Mensagens: 386
- Registrado em: Qua Abr 04, 2012 14:07
- Localização: Brazil
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Lic. Matemática
- Andamento: cursando
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Cálculo: Limites, Derivadas e Integrais] - Derivação de quo
por mausim » Ter Out 25, 2011 11:34
- 3 Respostas
- 2459 Exibições
- Última mensagem por LuizAquino

Ter Out 25, 2011 12:51
Cálculo: Limites, Derivadas e Integrais
-
- Derivação - derivação logarítmica
por teer4 » Ter Mai 21, 2013 12:11
- 0 Respostas
- 2161 Exibições
- Última mensagem por teer4

Ter Mai 21, 2013 12:11
Cálculo: Limites, Derivadas e Integrais
-
- Derivação
por Michelee » Seg Mai 16, 2011 15:24
- 1 Respostas
- 2224 Exibições
- Última mensagem por LuizAquino

Seg Mai 16, 2011 19:29
Cálculo: Limites, Derivadas e Integrais
-
- [Derivação]
por carolinenonato » Ter Abr 03, 2012 16:30
- 3 Respostas
- 3392 Exibições
- Última mensagem por MarceloFantini

Ter Abr 03, 2012 20:32
Cálculo: Limites, Derivadas e Integrais
-
- Derivação
por leticiapires52 » Qui Out 22, 2015 11:49
- 1 Respostas
- 1893 Exibições
- Última mensagem por Cleyson007

Qui Out 22, 2015 20:52
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.