• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limites com polinomio

Limites com polinomio

Mensagempor Rosi7 » Dom Mai 03, 2015 13:55

\lim_{1}\sqrt[3]{t}-1/\sqrt{t}-1

\lim_{1}\sqrt[3]{{t}^{6}}-1/\sqrt{{t}^{6}}-1

\lim_{1}{t}^{\frac{6}{3}}-1/{t}^{\frac{6}{2}}-1

\lim_{1}{t}^{2}-1/{t}^{3}-1



Consegui ir até o polinômio, mas não consigo abri-lo. Esta questão caiu em uma prova.. e a resposta a minha foi 2, porém já sei que está errada, pois consegui encontrar em um slide, mas só tem a resposta 2/3. O que estou fazendo errado? Isso está certo? Como chego em 2/3?
Rosi7
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Sáb Mai 02, 2015 18:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Física
Andamento: cursando

Re: Limites com polinomio

Mensagempor ViniciusAlmeida » Seg Mai 04, 2015 09:41

Olá, Rosi.
Você não pode elevar os "t" a 6, pois dessa forma irá resultar em \sqrt[3]{t^6} = t^2 e na sua função original o valor é \sqrt[3]{t}. Uma forma de resolução é:

\lim_{x\rightarrow 1} (\frac{\sqrt[3]{t} - 1}{\sqrt{t} - 1}) = \lim_{x\rightarrow 1} (\frac{\sqrt[3]{t} - 1}{\sqrt{t} - 1})*(\frac{\sqrt{t} + 1}{\sqrt{t} + 1}) = \frac{(\sqrt[3]{t} - 1)*(\sqrt{t} + 1)}{t - 1}

Repare que escrever t-1 é a mesma coisa que escrever \sqrt[3]{t^3} - 1^3, o que é uma diferença de cubos e pode ser fatorada (veja uma explicação melhor sobre essa fatoração aqui: http://www.brasilescola.com/matematica/ ... erenca.htm)

\lim_{x\rightarrow 1}  \frac{(\sqrt[3]{t} - 1)*(\sqrt{t} + 1)}{\sqrt[3]{t^3} - 1^3} = \frac{(\sqrt[3]{t} - 1)*(\sqrt{t} + 1)}{(\sqrt[3]{t} - 1)((\sqrt[3]{t})^2 + \sqrt[3]{t} + 1)} = \frac{(\sqrt{t} + 1)}{((\sqrt[3]{t})^2 + \sqrt[3]{t} + 1)}

A partir dai é só você substituir 1, pois não há mais indeterminação, e encontrará 2/3
PS: Essa fatoração de cubos é muito útil nos limites, recomendo que dê uma olhada mesmo no link que deixei
ViniciusAlmeida
Usuário Ativo
Usuário Ativo
 
Mensagens: 24
Registrado em: Seg Fev 09, 2015 12:13
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Limites com polinomio

Mensagempor Rosi7 » Dom Mai 10, 2015 20:43

Muito obrigada Vinicius! Bom domingo!
Rosi7
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Sáb Mai 02, 2015 18:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Física
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?