por Fernandobertolaccini » Sex Jan 23, 2015 11:44
Calcular

onde os limites de integração são:
![-R\leq x \leq R ; -\sqrt[]{R^2-x^2} \leq y \leq \sqrt[]{R^2-x^2}; 0 \leq z \leq \sqrt[]{R^2-x^2-y^2} -R\leq x \leq R ; -\sqrt[]{R^2-x^2} \leq y \leq \sqrt[]{R^2-x^2}; 0 \leq z \leq \sqrt[]{R^2-x^2-y^2}](/latexrender/pictures/f0238e3315137df46fe75331df7aba40.png)
Obs: tem que passar para coordenadas esféricas.
Resp: 4piR^5/15
Minha resposta deu 16piR^2/15, queria a resolução para saber no que errei
Obrigado !
-
Fernandobertolaccini
- Colaborador Voluntário

-
- Mensagens: 100
- Registrado em: Qui Mai 01, 2014 10:27
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Licenciatura em Física
- Andamento: cursando
por adauto martins » Ter Jan 27, 2015 20:16
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Cálculo do volume da esfera (coordenadas esféricas)]
por Horus123 » Qua Out 19, 2016 14:56
- 0 Respostas
- 4875 Exibições
- Última mensagem por Horus123

Qua Out 19, 2016 14:56
Cálculo: Limites, Derivadas e Integrais
-
- Coordenadas esféricas
por manuoliveira » Seg Jun 17, 2013 10:18
- 0 Respostas
- 1400 Exibições
- Última mensagem por manuoliveira

Seg Jun 17, 2013 10:18
Cálculo: Limites, Derivadas e Integrais
-
- Coordenadas esféricas
por Marcos_Mecatronica » Seg Jul 08, 2013 01:36
- 1 Respostas
- 1454 Exibições
- Última mensagem por young_jedi

Sex Jul 26, 2013 21:13
Geometria Analítica
-
- Sistemas de coordenadas esfericas
por Jumarp » Sex Fev 25, 2011 22:58
- 4 Respostas
- 2972 Exibições
- Última mensagem por Jumarp

Dom Fev 27, 2011 12:37
Trigonometria
-
- Integral em coordenadas esféricas
por bruna106 » Sáb Abr 09, 2011 15:22
- 1 Respostas
- 2630 Exibições
- Última mensagem por LuizAquino

Seg Abr 11, 2011 11:04
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.