• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Calculo de integrais triplas com coordenadas esféricas

Calculo de integrais triplas com coordenadas esféricas

Mensagempor Fernandobertolaccini » Sex Jan 23, 2015 11:44

Calcular \int_{}^{}\int_{}^{}\int_{}^{}(x^2+y^2)dxdydz onde os limites de integração são:
-R\leq x \leq R ; -\sqrt[]{R^2-x^2} \leq y \leq \sqrt[]{R^2-x^2}; 0 \leq z \leq \sqrt[]{R^2-x^2-y^2}


Obs: tem que passar para coordenadas esféricas.

Resp: 4piR^5/15


Minha resposta deu 16piR^2/15, queria a resolução para saber no que errei


Obrigado !
Fernandobertolaccini
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 100
Registrado em: Qui Mai 01, 2014 10:27
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Licenciatura em Física
Andamento: cursando

Re: Calculo de integrais triplas com coordenadas esféricas

Mensagempor adauto martins » Ter Jan 27, 2015 20:16

faz-se:
x=Rsen\phi.cos\theta\Rightarrow dx=-R.cos\phi.cos\theta d\phi
y=Rsen\phi.sen\theta\Rightarrow dy=R.cos\phi.sen\theta d\phi
z=Rcos\phi\Rightarrow dz=-R.sen\phi d\phi...
R\succeq 0,\phi\in[0,\pi],\theta\in [0,2\pi]...
\phi=0\Rightarrow x=0,\phi=\pi\Rightarrow x=0
\phi=0\Rightarrow y=0,\phi=\pi\Rightarrow y=0...\phi=0\Rightarrow z=1,\phi=\pi\Rightarrow z=-1
I=\int_{0}^{R}(\int_{-R}^{R}(\int_{-R}^{R}({Rsen\phi.cos\theta})^{2}+({Rsen\phi.sen\theta})^{2}.{R}^{3}{cos\phi}^{2}.sen\phi.cos\theta.sen\theta d\phi)d\phi)d\phi...ai meu amigo eh calcular em relaçao a \phi,e depois em relaçao a \theta,analogamente q. foi feito em \phi...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: