por jeferson_justo135 » Qua Jan 14, 2015 21:17
Olá pessoal! Gostaria que alguém me ajudasse a entender esse problema, não estou conseguindo encontrar os valores para montar a equação para calcular a integral dupla:
- Anexos
-

-
jeferson_justo135
- Usuário Ativo

-
- Mensagens: 15
- Registrado em: Seg Jan 12, 2015 20:32
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia elétrica
- Andamento: cursando
por Russman » Qui Jan 15, 2015 02:35
Primeiramente, identifique a curva e qual a forma de simetria.
A curva é uma circunferência de raio

centrada na origem. Portanto, a forma de simetria é polar. Assim, o mais indicado é utilizar coordenadas polares!
A lei de transformação é


Daí, da curva

(circunferência centrada na origem) você obtém

.
Todos os ponto compreendidos a direita pela reta

representam, no nosso sistema de coordenadas,

de modo que

a norte representam

e a esquerda de

representam

.
Assim, a integral deve ser efetuada de

e

.
A função

a ser integrada será substituída por

e o elemento de área

.
Logo,

.
Por outro lado, você pode também integrar em

e

pois a integral

é perfeitamente calculável via substituição.
Em ambos casos eu calculei

.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por jeferson_justo135 » Seg Jan 19, 2015 16:49
Olá amigo obrigado pelo retorno!
Agora eu entendi o conceito da questão acima, como montar, definir os valores. Porém não estou conseguindo entender como você chegou a esse resultado via substituição, você pode me explicar por favor? Ainda não domino essa matéria e estou estudando por conta.
Muito obrigado.
-
jeferson_justo135
- Usuário Ativo

-
- Mensagens: 15
- Registrado em: Seg Jan 12, 2015 20:32
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia elétrica
- Andamento: cursando
por Russman » Ter Jan 20, 2015 05:49
Na integral

faça a substituição

. Daí, como

então,

.
Como estamos avaliando uma região onde a função

é positiva, então

e , daí,

que é muito simples.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por jeferson_justo135 » Seg Fev 09, 2015 12:16
Olá amigo, obrigado!
Você pode por favor demonstrar pra mim essa resolução para chegar nesse resultado final que me disse? Estou precisando fazer esse exercício de integral trigonométrica porém o único apoio que tenho é o seu nesse fórum...por favor...
-
jeferson_justo135
- Usuário Ativo

-
- Mensagens: 15
- Registrado em: Seg Jan 12, 2015 20:32
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia elétrica
- Andamento: cursando
por Russman » Seg Fev 09, 2015 12:21
Qual integral?
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por jeferson_justo135 » Seg Fev 09, 2015 13:05
Essa amigo :

, fiz de várias maneiras porém não consigo desenvolver, não consigo chegar a esse resultado, esse é o problema amigo...
-
jeferson_justo135
- Usuário Ativo

-
- Mensagens: 15
- Registrado em: Seg Jan 12, 2015 20:32
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia elétrica
- Andamento: cursando
por Russman » Seg Fev 09, 2015 15:22
Um erro de digitação no post anterior. Segue abaixo a correção.
Na integral

faça a substituição

. Daí, como

então,

.
Como estamos avaliando uma região onde a função

é positiva, então

e , daí,

que é muito simples.
Como

e

então

e

. Assim,

Agora basta multiplicar por 5.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por jeferson_justo135 » Seg Fev 09, 2015 17:07
Nossa amigo você me ajudou muito!
Agradeço por toda atenção!
-
jeferson_justo135
- Usuário Ativo

-
- Mensagens: 15
- Registrado em: Seg Jan 12, 2015 20:32
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia elétrica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Integral dupla ƒƒ] área de região
por ricardosanto » Sex Nov 02, 2012 12:05
- 1 Respostas
- 1709 Exibições
- Última mensagem por young_jedi

Sex Nov 02, 2012 17:12
Cálculo: Limites, Derivadas e Integrais
-
- Integral iterada - Região de integração
por Cleyson007 » Sex Abr 13, 2012 23:40
- 9 Respostas
- 3902 Exibições
- Última mensagem por Cleyson007

Dom Abr 15, 2012 18:17
Cálculo: Limites, Derivadas e Integrais
-
- Integral iterada e Região de integração
por Cleyson007 » Sáb Abr 14, 2012 11:21
- 1 Respostas
- 1204 Exibições
- Última mensagem por LuizAquino

Sáb Abr 14, 2012 12:10
Cálculo: Limites, Derivadas e Integrais
-
- Integral iterada e região de integração
por Cleyson007 » Qua Abr 18, 2012 10:59
- 3 Respostas
- 2180 Exibições
- Última mensagem por LuizAquino

Qui Abr 19, 2012 23:15
Cálculo: Limites, Derivadas e Integrais
-
- [INTEGRAL DUPLA] Área do conjunto de integração
por Matemagica » Sáb Dez 14, 2013 05:31
- 2 Respostas
- 2515 Exibições
- Última mensagem por Russman

Sáb Dez 14, 2013 23:51
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.