• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Calculo de Primitiva

Calculo de Primitiva

Mensagempor Texorras » Sáb Jan 09, 2010 14:20

x^3
------------
3 + x^4


Se alguem me puder ajudar ( -------- e o traço de fracçao)
Texorras
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sáb Jan 09, 2010 13:07
Formação Escolar: GRADUAÇÃO
Área/Curso: Informatica
Andamento: cursando

Re: Calculo de Primitiva

Mensagempor Molina » Sáb Jan 09, 2010 15:05

Boa tarde.

Faça uma substituição:

Chame u=x^4+3, com isso, du=4x^3\Rightarrow \frac{du}{4}=x^3dx

Consegue seguir agora?

:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Calculo de Primitiva

Mensagempor Hel » Sáb Jan 09, 2010 15:10

Alguém pode me ajudar a resolver o gráfico f(x)= x/ln(x)
.. *-)
f´(x) = (g´(x)*h(x) - g(x)*h´(x))/(h(x))^2 = 0
..
f´(x) = ((x´)*(ln(x)) - (x)*(ln´(x)))/ln^2(x) = 0
f´(x) = (1*ln(x) - x*(1/x))/ln^2(x) = 0
f´(x) = (ln(x) - 1)/ln^2(x) = 0
..
(ln(x) - 1)/ln^2(x) = 0
ln(x) - 1 = 0
ln(x) = 1
log(x) na base e = 1
x = e
..
Não sei se esse ponto é máximo ou mínimo.
Hel
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Sex Jan 08, 2010 20:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: cursando

Re: Calculo de Primitiva

Mensagempor Texorras » Sáb Jan 09, 2010 15:11

sim .. vai dar

1/4 log(3+x^4) certo ?
Texorras
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sáb Jan 09, 2010 13:07
Formação Escolar: GRADUAÇÃO
Área/Curso: Informatica
Andamento: cursando

Re: Calculo de Primitiva

Mensagempor Hel » Sáb Jan 09, 2010 15:13

Alguém pode me ajudar a resolver o gráfico f(x)= x/ln(x)

1- onde ela é decrescente e crescente;
2- mínimo e o máximo da função;
3- assíntotas
4- onde côncava e convexa

f´(x) = (g´(x)*h(x) - g(x)*h´(x))/(h(x))^2 = 0
..
f´(x) = ((x´)*(ln(x)) - (x)*(ln´(x)))/ln^2(x) = 0
f´(x) = (1*ln(x) - x*(1/x))/ln^2(x) = 0
f´(x) = (ln(x) - 1)/ln^2(x) = 0
..
(ln(x) - 1)/ln^2(x) = 0
ln(x) - 1 = 0
ln(x) = 1
log(x) na base e = 1
x = e
..
Hel
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Sex Jan 08, 2010 20:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: cursando

Re: Calculo de Primitiva

Mensagempor Molina » Sáb Jan 09, 2010 15:32

Boa tarde, Hel.

Por favor, respeite as regras. Crie um tópico novo para sua dúvida e não utilize um tópico de outra questão para postar a sua. Assim o fórum fica mais organizado e fica arquivado sua dúvida no local certo.

Qualquer dúvida me procure.

Faça bom uso so fórum! :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Calculo de Primitiva

Mensagempor Molina » Sáb Jan 09, 2010 15:35

Texorras escreveu:sim .. vai dar

1/4 log(3+x^4) certo ?

Isso mesmo.

Bom estudo, :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Calculo de Primitiva

Mensagempor Hel » Sáb Jan 09, 2010 15:47

Desculpe Diego é o meu segundo acesso.

Att,

Helmar
Hel
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Sex Jan 08, 2010 20:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59