• Anúncio Global
    Respostas
    Exibições
    Última mensagem

frações parciais

frações parciais

Mensagempor fasaatyro » Qui Dez 04, 2014 09:18

\int_\frac{{x}^{2}-1}{{x}^{4}-{x}^{2}}
fasaatyro
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Seg Dez 01, 2014 21:41
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura matematica
Andamento: cursando

Re: frações parciais

Mensagempor lucas_carvalho » Qui Dez 04, 2014 11:28

É só simplificar a expressão:
\frac{x^2-1}{x^4-x^2}=\frac{x^2-1}{x^2(x^2-1)}=\frac{1}{x^2}
\int_{}^{}(\frac{1}{x^2})dx=-\frac{1}{x}+k
lucas_carvalho
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Ter Dez 02, 2014 20:17
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia química
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.