• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral por substituição trigonométrica

Integral por substituição trigonométrica

Mensagempor Fernandobertolaccini » Seg Nov 03, 2014 17:32

Mostre que: \int_{0}^{b/2}x^2\sqrt[]{b^2-x^2}dx = \frac{b^4}{16}(\frac{\pi}{3}-\frac{\sqrt[]{3}}{4})


Muito Obrigado !!
Fernandobertolaccini
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 100
Registrado em: Qui Mai 01, 2014 10:27
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Licenciatura em Física
Andamento: cursando

Re: Integral por substituição trigonométrica

Mensagempor young_jedi » Seg Nov 03, 2014 23:05

fazendo

x=b.sen(\theta)

dx=b.cos(theta)d\theta

\int_{0}^{\frac{\pi}{6}}b^2sen^2(\theta)\sqrt{b^2-b^2sen^2(\theta)}b.cos(\theta)d\theta

\int_{0}^{\frac{\pi}{6}}b^2sen^2(\theta)\sqrt{b^2cos^2(\theta)}b.cos(\theta)d\theta

\int_{0}^{\frac{\pi}{6}}b^4sen^2(\theta)cos^2(\theta)d\theta

\int_{0}^{\frac{\pi}{6}}\frac{b^4.sen^2(2\theta)}{4}d\theta

\int_{0}^{\frac{\pi}{6}}\frac{b^4(1-cos^2(2\theta)}{8}d\theta

a partir daqui tente concluir e comente se tiver alguma duvida
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.