• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Problema de Maximização

Problema de Maximização

Mensagempor Fernandobertolaccini » Ter Out 28, 2014 21:52

José comprou uma Smart TV nova, 4K, para assistir à Copa do Mundo. A TV tem uma altura de 0,5m e vai ser colocada a 4m de distância dos olhos de José, quando ele estiver sentado confortavelmente em seu sofá, xingando aqueles milionários que estão jogando vezes o que deveriam para ganhar a copa (? -> 0). Sabendo que os olhos de José, ao sentar-se, estão a 1,5m de altura do solo e num nível entre os bordos inferior e superior da TV, a que altura do solo deve ser colocada a TV para que o ângulo de visão de José seja máximo?
Fernandobertolaccini
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 100
Registrado em: Qui Mai 01, 2014 10:27
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Licenciatura em Física
Andamento: cursando

Re: Problema de Maximização

Mensagempor Russman » Qua Out 29, 2014 03:56

Olhando na figura fica claro que H=h+x, onde H é a altura da TV com relação ao solo e h a altura dos olhos da pessoa om relação ao mesmo.. Portanto, uma vez calculado x seremos capazes de calcular H. Assim, nossa busca será o de calcular o ângulo \alpha em função de x a fim de estudar a correspondente maximização.

É possível notar que \tan(\alpha + \theta) = \frac{t+x}{D} da mesma maneira que \tan(\theta) = \frac{x}{D}. Assim, como

\tan(a+b) = \frac{\tan(a) + \tan(b)}{1-\tan(a) \tan(b)}

então

\tan(\alpha + \theta) = \frac{\tan(\alpha) + \tan(\theta)}{1-\tan(\alpha) \tan(\theta)} \Rightarrow \frac{t+x}{D}  = \frac{\tan(\alpha)+ \frac{x}{D}}{1-\frac{x}{D}\tan(\alpha)}

A solução desta equação(que expressa o ângulo \alpha = \alpha(x)) é

\alpha(x) = \tan^{-1}\left ( \frac{Dt}{D^2-tx-x^2} \right )

Agora, sabemos que x extremiza \alpha(x) se \frac{\mathrm{d} }{\mathrm{d} x} \alpha(x) = 0. Assim, como \frac{\mathrm{d} }{\mathrm{d} x} \tan^{-1}(x) = \frac{1}{1+x^2} então, aplicando a regra da cadeia, vem que

\frac{\mathrm{d} }{\mathrm{d} x} \alpha(x) = \frac{\mathrm{d}\tan^{-1}(f(x)) }{\mathrm{d} f(x)} \frac{\mathrm{d}f }{\mathrm{d} x}

onde f(x) = \frac{Dt}{D^2-tx-x^2}.

Daí, \frac{\mathrm{d} }{\mathrm{d} x} \alpha(x)  = 0 implica em \frac{\mathrm{d}f }{\mathrm{d} x} = 0 já que \frac{\mathrm{d}\tan^{-1}(f(x)) }{\mathrm{d} f(x)} = \frac{1}{1+f^2} nunca se anula.

Agora, note que f(x) =\frac{ Dt}{p(x)} onde p(x) = D^2 - tx-x^2. Assim, para calcular a solução de \frac{\mathrm{d}f }{\mathrm{d} x} = 0 basta tomar

f(x)p(x) = Dt\Rightarrow \frac{\mathrm{d} }{\mathrm{d} x}\left ( f(x)p(x) \right ) = 0 \Rightarrow p(x)\frac{\mathrm{d} f(x)}{\mathrm{d} x} + f(x)\frac{\mathrm{d} p(x)}{\mathrm{d} x}=0\Rightarrow f(x)\frac{\mathrm{d} p(x)}{\mathrm{d} x} = 0

Como f(x) nunca se anula a solução vem com \frac{\mathrm{d} p(x)}{\mathrm{d} x} = 0. Ou seja,

-t-2x=0 \Rightarrow x=-\frac{t}{2}

O fato de x<0 mostra que a TV deve estar a uma altura menor do que a propria altura dos olhos do assistente.

Agora, a altura referente ao solo que a TV deve estar é H=x+h = h-\frac{t}{2} = 1,5-0,25=1,25 \mbox{ } m.

Em outras palavras, a TV deve situar-se sempre a uma altura equivalente a altura dos olhos do assistente menos metade do comprimento da própria TV. Note q a distância da TV ao assistente é irrelevante.
Anexos
2014-10-29 03.29.57.jpg
figura1
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?