• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Diferencial] Diferencial total

[Diferencial] Diferencial total

Mensagempor temujin » Qua Mai 29, 2013 17:10

Boa tarde, pessoal. Essa me pegou...



Dado que z=(6x-x^2)(y^2-2w), \ x=-3t,\  y=5t^3, \ w=e^t+1 , determine o valor de \frac{dz}{dt} para t=0.

O gabarito diz que é 18.

O que eu tentei:

dx = -3dt \ \ , \ \ dy=15t^2dt \ \ , \ \ dw = e^t dt

\\ dz = \frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy + \frac{\partial z}{\partial w}dw \Rightarrow \frac{dz}{dt} = (6-2x)(-3)+2y(15t^2)-2e^t = \\ = (6+6t)(-3)+10t^3(15t^2)-2e^t

\frac{dz}{dt}(0) = -18 - 2 = -20

Alguma idéia de onde está o erro??

*-)
temujin
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Qui Mar 14, 2013 15:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Economia
Andamento: formado

Re: [Diferencial] Diferencial total

Mensagempor adauto martins » Seg Out 20, 2014 19:33

Z=(6x-{x}^{2})({y}^{2}-2w)=(6.(-3t)-{(-3t)}^{2})({(5{t}^{3})}^{2}-2({e}^{t}+1)=(-18t+9{t}^{2})(25{t}^{6}-2({e}^{t}+1)=-450{t}^{7}+36({e}^{t}+1)+225{t}^{8}-18({e}^{t}+1)...
dz/dt=-3150{t}^{6}+36{e}^{t}+1800{t}^{7}-18{e}^{t},p/t=0,teremos:
dz/dt=18{e}^{0}=18
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: [Diferencial] Diferencial total

Mensagempor temujin » Ter Out 21, 2014 17:17

Boa!

Valeu!!

:y: :y:
temujin
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Qui Mar 14, 2013 15:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Economia
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59