• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Diferencial] Diferencial total

[Diferencial] Diferencial total

Mensagempor temujin » Qua Mai 29, 2013 17:10

Boa tarde, pessoal. Essa me pegou...



Dado que z=(6x-x^2)(y^2-2w), \ x=-3t,\  y=5t^3, \ w=e^t+1 , determine o valor de \frac{dz}{dt} para t=0.

O gabarito diz que é 18.

O que eu tentei:

dx = -3dt \ \ , \ \ dy=15t^2dt \ \ , \ \ dw = e^t dt

\\ dz = \frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy + \frac{\partial z}{\partial w}dw \Rightarrow \frac{dz}{dt} = (6-2x)(-3)+2y(15t^2)-2e^t = \\ = (6+6t)(-3)+10t^3(15t^2)-2e^t

\frac{dz}{dt}(0) = -18 - 2 = -20

Alguma idéia de onde está o erro??

*-)
temujin
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Qui Mar 14, 2013 15:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Economia
Andamento: formado

Re: [Diferencial] Diferencial total

Mensagempor adauto martins » Seg Out 20, 2014 19:33

Z=(6x-{x}^{2})({y}^{2}-2w)=(6.(-3t)-{(-3t)}^{2})({(5{t}^{3})}^{2}-2({e}^{t}+1)=(-18t+9{t}^{2})(25{t}^{6}-2({e}^{t}+1)=-450{t}^{7}+36({e}^{t}+1)+225{t}^{8}-18({e}^{t}+1)...
dz/dt=-3150{t}^{6}+36{e}^{t}+1800{t}^{7}-18{e}^{t},p/t=0,teremos:
dz/dt=18{e}^{0}=18
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: [Diferencial] Diferencial total

Mensagempor temujin » Ter Out 21, 2014 17:17

Boa!

Valeu!!

:y: :y:
temujin
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Qui Mar 14, 2013 15:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Economia
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.