por b11adriano » Sáb Out 18, 2014 18:47
O fator integrante da função,
dy/dx -2yx=x é dada por:
-
b11adriano
- Novo Usuário

-
- Mensagens: 6
- Registrado em: Sáb Out 04, 2014 14:50
- Formação Escolar: GRADUAÇÃO
- Área/Curso: egenharia de produçao
- Andamento: cursando
por adauto martins » Dom Out 19, 2014 14:28
fator integrante de uma EDO e uma funçao

tal q.

...logo
a EDO apresentada:dy/dx-2xy=x...

...
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Equações diferenciais] Fator integrante
por brunojorge29 » Qua Jun 19, 2013 10:52
- 2 Respostas
- 1149 Exibições
- Última mensagem por adauto martins

Ter Out 21, 2014 18:50
Cálculo: Limites, Derivadas e Integrais
-
- maior fator primo
por Marcos Ivan » Sáb Ago 21, 2010 12:29
- 1 Respostas
- 2296 Exibições
- Última mensagem por alexandre32100

Sex Set 24, 2010 17:28
Geometria Analítica
-
- /fATOR COMUM EM EVIDENCIA ME AJUDEM !!!!
por Reidson » Dom Ago 04, 2013 23:56
- 1 Respostas
- 1217 Exibições
- Última mensagem por Russman

Seg Ago 05, 2013 07:36
Álgebra Elementar
-
- [Integral Definida] Denominador c/ fator x e raiz de binômio
por Matheus Lacombe O » Dom Mar 17, 2013 17:35
- 2 Respostas
- 5764 Exibições
- Última mensagem por Matheus Lacombe O

Qua Mar 20, 2013 13:25
Cálculo: Limites, Derivadas e Integrais
-
- Técnicas de integração - multiplicando pelo fator unitário
por Victor Mello » Qui Nov 21, 2013 18:37
- 2 Respostas
- 1598 Exibições
- Última mensagem por Victor Mello

Qui Nov 21, 2013 23:27
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.