• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dúvida em relação a derivadas parcias

Dúvida em relação a derivadas parcias

Mensagempor Razoli » Sáb Set 13, 2014 13:07

Alguém poderia me ajudar a entender esse exercício e construir ele?

1 - Seja f:R^{2} \rightarrow R e suponha que fx(x,y) = 0 e fy(x,y)=0, PARA TODO (x,y) pertencente ao R^{2}, prove que f é uma constante.

b) Dê um exemplo de uma função f:A -> R^2 tal que fx(x,y) = 0 e fy(x,y)=0, para todo (x,y) pertencente a 'A', mas que f não seja constante em A.
Razoli
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Sáb Abr 06, 2013 15:42
Formação Escolar: GRADUAÇÃO
Área/Curso: Estatistica
Andamento: cursando

Re: Dúvida em relação a derivadas parcias

Mensagempor adauto martins » Qui Out 16, 2014 11:30

a){f}_{x}=\partial/\partialf/x...\int_{}^{}\partial{f}_{x}dx=\int_{}^{}0dx=0+c,c\in\Re...o mesmo faz-se com {f}_{x}=\partial/\partial{f}_{y}...
b)A e o conjunto dos maximos e minimos relativos(incluindo o max.e min.absolutos) de f(x,y) defindos em A\subset{\Re}^{2}
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}