por Pessoa Estranha » Qui Set 25, 2014 13:03
Olá!
Preciso de ajuda para resolver o seguinte exercício:
"Obter a equação da reta tangente à curva

em

".
Minha resolução:




Resposta do Livro:

Tentei fazer algumas manipulações algébricas para tentar chegar numa equivalência das expressões, mas não deu certo.
Por favor, podem me ajudar?
Muito Obrigada!
-
Pessoa Estranha
- Colaborador Voluntário

-
- Mensagens: 262
- Registrado em: Ter Jul 16, 2013 16:43
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por DanielFerreira » Qui Set 25, 2014 21:57
Derivemos,
Sabemos que a equação da reta tangente... no ponto

é dada por


"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por Pessoa Estranha » Sex Set 26, 2014 10:47
Olá! Muito Obrigada! Errei em alguma coisa na hora de derivar. Vou ver direitinho agora. Muito obrigada mesmo!

-
Pessoa Estranha
- Colaborador Voluntário

-
- Mensagens: 262
- Registrado em: Ter Jul 16, 2013 16:43
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- cálculo diferencial e integral
por Neperiano » Qua Out 08, 2008 22:20
- 4 Respostas
- 6879 Exibições
- Última mensagem por admin

Ter Out 14, 2008 16:41
Cálculo: Limites, Derivadas e Integrais
-
- calculo integral e diferencial
por edilainemorais » Qui Fev 20, 2014 18:15
- 0 Respostas
- 1729 Exibições
- Última mensagem por edilainemorais

Qui Fev 20, 2014 18:15
Cálculo: Limites, Derivadas e Integrais
-
- cálculo diferencial e integral II
por Luiz vicente » Seg Mar 06, 2017 13:30
- 0 Respostas
- 6469 Exibições
- Última mensagem por Luiz vicente

Seg Mar 06, 2017 13:30
Cálculo: Limites, Derivadas e Integrais
-
- [Cálculo Diferencial e Integral I] Limite - Urgente!
por Pessoa Estranha » Ter Mai 27, 2014 23:34
- 2 Respostas
- 2594 Exibições
- Última mensagem por Pessoa Estranha

Qua Mai 28, 2014 22:45
Cálculo: Limites, Derivadas e Integrais
-
- Integral x diferencial!
por Russman » Qua Mai 23, 2012 18:49
- 5 Respostas
- 2902 Exibições
- Última mensagem por Russman

Dom Mai 27, 2012 19:01
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.