• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limites : Assintota obliqua

Limites : Assintota obliqua

Mensagempor Fernandobertolaccini » Sáb Jul 26, 2014 12:24

Sabe-se que o gráfico da função F(x) = raiz cúbica de \sqrt[3]{6x^2-x^3} possui uma assintota oblíqua. Determine a equação dessa assintota e prove que a curva de F(x) intercepta a mesma.


resp: y= - x + 2


Muito obrigado ;D
Fernandobertolaccini
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 100
Registrado em: Qui Mai 01, 2014 10:27
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Licenciatura em Física
Andamento: cursando

Re: Limites : Assintota obliqua

Mensagempor ant_dii » Dom Jul 27, 2014 05:04

Fernandobertolaccini escreveu:Sabe-se que o gráfico da função F(x) = raiz cúbica de \sqrt[3]{6x^2-x^3} possui uma assintota oblíqua. Determine a equação dessa assintota e prove que a curva de F(x) intercepta a mesma.


resp: y= - x + 2


Muito obrigado ;D

Não ficou claro se você quer encontrar a assíntota de F(x)=\sqrt[3]{6x^2-x^3} ou de F(x)=\sqrt[3]{\sqrt[3]{6x^2-x^3}}.

Se for o primeiro (ou também o segundo, pois o método é o mesmo) você deve encontrar uma reta que tem equação y=ax+b tal que a=\lim_{x\rightarrow \infty} \left[\frac{F(x)}{x}\right] ou a=\lim_{x\rightarrow -\infty} \left[\frac{F(x)}{x}\right] e b=\lim_{x\rightarrow \infty} \left[F(x)-ax\right] ou b=\lim_{x\rightarrow \infty} \left[F(x)-ax\right].

Assim,
a=\lim_{x\rightarrow \pm \infty} \left[\frac{\sqrt[3]{6x^2-x^3}}{x}\right]=\lim_{x\rightarrow \pm \infty} \left[\frac{\sqrt[3]{6x^2-x^3}}{\sqrt[3]{x}}\right]=\newline \newline \lim_{x\rightarrow \pm \infty} \left[\sqrt[3]{\frac{6x^2-x^3}{x^3}}\right]=\lim_{x\rightarrow \pm \infty} \left[\sqrt[3]{\frac{6}{x}-1}\right]=-1


e b=\lim_{x\rightarrow -\infty} \left[F(x)+ax\right]=\lim_{x\rightarrow -\infty} \left[\sqrt[3]{6x^2-x^3}-(-1)x\right]=

=\lim_{x\rightarrow -\infty}\frac{\left[\sqrt[3]{6x^2-x^3}+x\right]\left[(\sqrt[3]{6x^2-x^3})^{2}-x\sqrt[3]{6x^2-x^3}+x^{2}\right]}{\left[(\sqrt[3]{6x^2-x^3})^{2}-x\sqrt[3]{6x^2-x^3}+x^{2}\right]}=

=\lim_{x\rightarrow -\infty}\frac{6x^2}{\left[(\sqrt[3]{6x^2-x^3})^{2}-x\sqrt[3]{6x^2-x^3}+x^{2}\right]}=\frac{6}{3}=2

Tente fazer os cálculos sozinho e verifique porque para encontrar o valor de b usei x\rightarrow -\infty e não x\rightarrow \infty.
Só os loucos sabem...
ant_dii
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 129
Registrado em: Qua Jun 29, 2011 19:46
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59