• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite de função trigonométrica

Limite de função trigonométrica

Mensagempor Carolminera » Qui Jul 17, 2014 15:44

Alguém ajuda?
Estou com dificuldade para resolver o seguinte limite trigonométrico:


\lim_{x ->  -2}       sen(2+x).cos(1/2+x) 
                       / x+2



Obrigada!
Carolminera
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Qua Jul 02, 2014 15:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Física Médica
Andamento: cursando

Re: Limite de função trigonométrica

Mensagempor DanielFerreira » Sáb Jul 19, 2014 21:09

Carol, repare que a restrição do domínio é quando x é igual a zero. Uma vez que, x vale (- 2) podemos substituí-lo...

Veja:

\\ \lim_{x \rightarrow - 2} \left[ \frac{\sin (2 + x) \cdot \cos (\frac{1}{2} + x)}{x} + 2 \right] = \\\\\\ \frac{\sin (2 - 2) \cdot \cos (\frac{1}{2} - 2)}{- 2} + 2 = \\\\\\ \frac{\sin 0 \cdot \cos (\frac{- 3}{2})}{- 2} + 2 = \\\\\\ \frac{0}{- 2} + 2 = \\\\ 0 + 2 = \\\\ \boxed{2}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Limite de função trigonométrica

Mensagempor Carolminera » Dom Jul 20, 2014 12:25

Mas colocando -2 no lugar do x do denominador, não zeraria o denominador? E isso não daria uma indeterminação?
Porque o denominador é x+2, iria zerar... Estava pensando em fazer troca de variável..
Carolminera
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Qua Jul 02, 2014 15:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Física Médica
Andamento: cursando

Re: Limite de função trigonométrica

Mensagempor DanielFerreira » Dom Jul 20, 2014 12:30

Ah! Equivocadamente considerei \lim_{x \rightarrow - 2} \left[ \frac{\sin (2 + x) \cdot \cos (\frac{1}{2} + x)}{x} + 2 \right] quando deveria ter feito \lim_{x \rightarrow - 2} \left[ \frac{\sin (2 + x) \cdot \cos (\frac{1}{2 + x})}{x + 2} \right]
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Limite de função trigonométrica

Mensagempor Carolminera » Dom Jul 20, 2014 21:52

Então, mas e como ficaria? A troca de variável daria certo?
Carolminera
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Qua Jul 02, 2014 15:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Física Médica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59