• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[integração por partes] Dúvida teórica

[integração por partes] Dúvida teórica

Mensagempor natanaelskt » Qui Jul 17, 2014 03:00

Estou em dúvida se posso resolver o exercício abaixo com integração por partes.
f(x)=\int\{(3x+2)/(1+ x^2)}dx  =  f(x)=\int\ (3x+2) * 1/(1+ x^2)}dx ai ficaria fácil fazer por integração por partes. mas eu posso fazer isso? porque o resultado do livro já diferente e eu não sei outro modo de fazer.
se não puder fazer por integração por partes,como eu posso saber se posso usar a integração por partes.
por exemplo:
f(x)=\int\ (2x-1)/(9+4x^2)}dx  =  f(x)=\int\ (2x-1) * 1/(9+ 4x^2)}dx =  f(x)=\int\ (2x-1) * (1/9)/(1+ (2x/3)^2)}dx

ai eu integraria por partes.
please.
natanaelskt
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 32
Registrado em: Seg Mar 11, 2013 15:06
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [integração por partes] Dúvida teórica

Mensagempor e8group » Qui Jul 17, 2014 10:03

Não recomendo integração por partes .

Dica : O integrando se escreve como

3 \cdot \frac{x}{1+x^2} + 2 \cdot \frac{1}{1+x^2} .

Devido a linearidade da integral ,basta integrar as expressões separadamente e \sum os resultados .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}