• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[integração por partes] Dúvida teórica

[integração por partes] Dúvida teórica

Mensagempor natanaelskt » Qui Jul 17, 2014 03:00

Estou em dúvida se posso resolver o exercício abaixo com integração por partes.
f(x)=\int\{(3x+2)/(1+ x^2)}dx  =  f(x)=\int\ (3x+2) * 1/(1+ x^2)}dx ai ficaria fácil fazer por integração por partes. mas eu posso fazer isso? porque o resultado do livro já diferente e eu não sei outro modo de fazer.
se não puder fazer por integração por partes,como eu posso saber se posso usar a integração por partes.
por exemplo:
f(x)=\int\ (2x-1)/(9+4x^2)}dx  =  f(x)=\int\ (2x-1) * 1/(9+ 4x^2)}dx =  f(x)=\int\ (2x-1) * (1/9)/(1+ (2x/3)^2)}dx

ai eu integraria por partes.
please.
natanaelskt
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 32
Registrado em: Seg Mar 11, 2013 15:06
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [integração por partes] Dúvida teórica

Mensagempor e8group » Qui Jul 17, 2014 10:03

Não recomendo integração por partes .

Dica : O integrando se escreve como

3 \cdot \frac{x}{1+x^2} + 2 \cdot \frac{1}{1+x^2} .

Devido a linearidade da integral ,basta integrar as expressões separadamente e \sum os resultados .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.