por Carolminera » Dom Jul 06, 2014 12:59
Esboce o gráfico de f (x) = x|x|. Para que valores de x, f é diferenciável? Encontre uma fórmula para f ' .
Alguém ajuda?
-
Carolminera
- Usuário Ativo

-
- Mensagens: 19
- Registrado em: Qua Jul 02, 2014 15:57
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Física Médica
- Andamento: cursando
por young_jedi » Dom Jul 06, 2014 14:08
podemos dizer o seguinte

esta função é diferenciavel em qualquer ponto da mesma, pois é uma função continua
uma formula para a derivada seria derivar a função em cada uma das condições

-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por Carolminera » Dom Jul 06, 2014 14:54
Poxa, muitoo obrigada!
-
Carolminera
- Usuário Ativo

-
- Mensagens: 19
- Registrado em: Qua Jul 02, 2014 15:57
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Física Médica
- Andamento: cursando
por Man Utd » Dom Jul 06, 2014 22:47
young_jedi escreveu:podemos dizer o seguinte

esta função é diferenciavel em qualquer ponto da mesma, pois é uma função continua
uma formula para a derivada seria derivar a função em cada uma das condições

young_jedi , eu não entendi o porque da função ser continua implica que é derivavél em todos os pontos, pois a continuidade é uma condição necessária mas não suficiente para derivabilidade,poderia me explicar com mais detalhes?
abraço

-
Man Utd
- Colaborador Voluntário

-
- Mensagens: 155
- Registrado em: Qua Abr 03, 2013 09:20
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia da Computação
- Andamento: cursando
por young_jedi » Dom Jul 06, 2014 23:17
realamente o fato da função ser continua não garante que seja diferenciavel
neste caso a dificuldade é de verificar se ela é diferenciavel em x=0 pois nos demais pontos é facil verificar que ela é diferenciavel
fazendo pelo limite


neste caso temos que fazer os limites laterais por causa do modulo, sendo esta derivada aplicada no ponto x=0 então h tendendo a 0 pela direita implica que

portanto podemos dizer que


agora tomando o limite pela esquerda

sendo esta derivada aplicada no ponto x=0 então h tendendo a 0 pela esquerda implica que

portanto podemos dizer que


como x=0

como o dois limites laterais são iguais a zero então temos que o limite é igual zero portanto a função é diferenciavel em x=0
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [derivada] derivada pela definição da secante
por TheKyabu » Sáb Out 27, 2012 23:24
- 2 Respostas
- 10877 Exibições
- Última mensagem por TheKyabu

Dom Out 28, 2012 11:44
Cálculo: Limites, Derivadas e Integrais
-
- [DERIVADA] DERIVADA POR DEFINIÇÃO DA RAIZ DO MÓDULO DE X
por Matheusgdp » Qua Set 16, 2015 04:07
- 2 Respostas
- 5102 Exibições
- Última mensagem por Matheusgdp

Qui Set 17, 2015 18:31
Cálculo: Limites, Derivadas e Integrais
-
- [DERIVADA] Duvida em derivada da definição.
por paulohenrique_ » Dom Dez 09, 2012 16:05
- 1 Respostas
- 1924 Exibições
- Última mensagem por young_jedi

Dom Dez 09, 2012 18:12
Cálculo: Limites, Derivadas e Integrais
-
- [Derivada] Definição de derivada num ponto
por fff » Seg Fev 24, 2014 17:12
- 2 Respostas
- 2792 Exibições
- Última mensagem por e8group

Dom Jul 20, 2014 16:14
Cálculo: Limites, Derivadas e Integrais
-
- Derivada por definição
por Blame » Ter Jun 18, 2013 18:17
- 0 Respostas
- 1094 Exibições
- Última mensagem por Blame

Ter Jun 18, 2013 18:17
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Funções
Autor:
Emilia - Sex Dez 03, 2010 13:24
Preciso de ajuda no seguinte problema:
O governo de um Estado Brasileiro mudou a contribuição previdenciária de seus contribuintes. era de 6% sobre qualquer salário; passou para 11% sobre o que excede R$1.200,00 nos salários. Por exemplo, sobre uma salário de R$1.700,00, a contribuição anterior era: 0,06x R$1.700,00 = R$102,00; e a atual é: 0,11x(R$1.700,00 - R$1.200,00) = R$55,00.
i. Determine as funções que fornecem o valor das contribuições em função do valor x do salário antes e depois da mudança na forma de cobrança.
ii. Esboce seus gráficos.
iii. Determine os valores de salários para os quais:
- a contribuição diminuiu;
- a contribuição permaneceu a mesma;
- a contribuição aumentou.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.