por Carolminera » Qua Jul 02, 2014 16:03
O deslocamento ( em metros ) de uma partícula movendo-se ao longo
de uma reta é dado pela equação s(t) = t^2? 8t + 18, onde t é medido em segundos.
Encontre as velocidades médias sobre os seguintes intervalos de tempo [3,4], [3.5, 4], [4,
5] [4, 4.5]. Encontre a velocidade instantânea quando t = 4. Faça o gráfico de s como
função do tempo e desenhe as retas secantes, cujas inclinações são as velocidades
médias pedidas e a reta tangente ao gráfico no ponto (4,2).
Alguém ajuda?
-
Carolminera
- Usuário Ativo

-
- Mensagens: 19
- Registrado em: Qua Jul 02, 2014 15:57
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Física Médica
- Andamento: cursando
por Russman » Qua Jul 02, 2014 18:40
Lembre-se que a
velocidade média 
desenvolvida pelo móvel no intervalo de tempo
![[t_1,t_2] [t_1,t_2]](/latexrender/pictures/7460d8dce724ee4546f591b3f1b795b4.png)
é definida como

onde

é o deslocamento sofrido e

.
Assim, por exemplo, para calcular a velocidade média desenvolvida no intervalo
![[3,4] [3,4]](/latexrender/pictures/b814fa889082069ffb727ee1623c0944.png)
basta substituir, já que é conhecida, os valores de tempo na função deslocamento. Veja,

Não se engane com o sinal negativo. Ele e o sinal positivo apenas indicam o
sentido do movimento. Se a posição cresce para a direita(como usualmente se faz) e a velocidade média desenvolvida no intervalo de tempo de interesse tem sinal negativo, então o móvel se desloca no sentido de decrescimento da posição nesse intervalo de tempo. Ou seja, para a esquerda.
A
velocidade instantânea 
é calculada para um instante de tempo específico através do limite

que , na prática, é a derivada com relação a

da função posição. Isto é,

.
Portanto,

e basta substituir

pelo instante que se deseja calcular a velocidade instantânea.
No conhecimento desta, é útil saber(e simples de mostrar) que a velocidade média desenvolvida no intervalo
![[t_1,t_2] [t_1,t_2]](/latexrender/pictures/7460d8dce724ee4546f591b3f1b795b4.png)
se relaciona com a velocidade instantânea nos instantes

e

por

.
Ou seja, a velocidade média desenvolvida no intervalo de tempo de interesse é a média aritmética simples das velocidades instantâneas desenvolvidas nos extremos desse intervalo.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por Carolminera » Qui Jul 03, 2014 11:49
Muuuito obrigada!
-
Carolminera
- Usuário Ativo

-
- Mensagens: 19
- Registrado em: Qua Jul 02, 2014 15:57
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Física Médica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Integrais definidos
por Martins95 » Ter Mai 30, 2017 15:54
- 0 Respostas
- 2653 Exibições
- Última mensagem por Martins95

Ter Mai 30, 2017 15:54
Cálculo: Limites, Derivadas e Integrais
-
- [DERIVADA] Concavidade e pontos de Inflexão
por fabriel » Sex Set 21, 2012 22:56
- 3 Respostas
- 2306 Exibições
- Última mensagem por MarceloFantini

Sáb Set 22, 2012 01:18
Cálculo: Limites, Derivadas e Integrais
-
- [Derivada] Achar pontos de inflexão
por alienpuke » Qui Nov 12, 2015 11:31
- 2 Respostas
- 3609 Exibições
- Última mensagem por alienpuke

Ter Nov 17, 2015 10:01
Cálculo: Limites, Derivadas e Integrais
-
- considere as funções definidos por f(x):
por Ana Maria da Silva » Sex Mai 17, 2013 11:43
- 0 Respostas
- 984 Exibições
- Última mensagem por Ana Maria da Silva

Sex Mai 17, 2013 11:43
Cálculo: Limites, Derivadas e Integrais
-
- [Derivada Implícita]Encontrar os pontos onde tg é horizontal
por narcpereira » Sáb Mai 16, 2015 10:20
- 1 Respostas
- 2351 Exibições
- Última mensagem por nakagumahissao

Ter Out 06, 2015 13:58
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.