• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[integral definida] - dúvida em exercício

[integral definida] - dúvida em exercício

Mensagempor natanaelskt » Qua Jul 02, 2014 02:13

Não estou entendendo como faz esse exercício. o A eu entendi. porém esses outros dois eu não sei fazer. eu não entendo essas expressões em cima da integral. alguém poderia me explicar como resolve?
Anexos
dúvida nas integrais..PNG
natanaelskt
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 32
Registrado em: Seg Mar 11, 2013 15:06
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [integral definida] - dúvida em exercício

Mensagempor e8group » Qua Jul 02, 2014 14:04

Note que \boxed {\frac{d}{dx}  \left( \int_{q(x)}^{p(x) }  g(t) dt   \right)  =  g(p(x)) \cdot p'(x) - g(q(x)) \cdot q'(x) } .

Sem rigor, apenas p/ termos uma noção de um resultado ...

Para começar seja f(x) = \int_{a}^x g(t) dt (a constante ) . Segue-se

\frac{f(x+h) - f(x)}{h} =  \frac{1}{h} \left( \int_{a}^{x+h}  g(t)dt  -  \int_{a}^{x}  g(t)dt  \right)  =

=  \frac{1}{h} \int_x^{x+h}  g(t) dt .

Quando h \to 0 , a integral de g sobre o intervalo [x,x+h] pode ser aproximada por g(x) \cdot h e com isso f'(x) = g(x) .Alternativamente ,deixe I ser um intervalo fechado de extremos x, x+h .Temos que

h \cdot \sup_{\zeta \in I } g(\zeta) \geq \int_x^{x+h}  g(t) dt \geq h \cdot \inf_{\zeta \in I } g(\zeta) sse

\sup_{\zeta \in  I}  g(\zeta)  \geq  \frac{1}{h}   \int_x^{x+h}  g(t) dt \geq  \inf_{\zeta \in I } g(\zeta) .

Quando h\to 0, tem-se que g(x) = \sup_{\zeta \in I } g(\zeta) \geq \frac{1}{h}  \int_x^{x+h}  g(t) dt \geq  \inf_{\zeta \in I } g(\zeta) = g(x) e portanto f'(x) = g(x) .

Como consequência da fórmula obtida juntamente com a regra da cadeia , vamos ter [f(p(x))]' = f'(p(x)) \cdot p'(x) = g(p(x))p'(x) . Agora vamos obter a fórmula destacada .Para tal ,fixe x e suponha p(x) \neq q(x) (o caso q(x) = p(x) é trivial) . Neste caso , existe k entre p(x) e q(x) .(O intervalo não é degenerado) e assim

\int_{q(x)}^{p(x)}  g(t) dt = \int_{q(x)}^k g(t) dt  +  \int_{k}^{p(x)}   g(t) dt   = \int_{k}^{p(x)}   g(t) dt -  \int_{k}^{q(x)}   g(t) dt   . . Daí, ao derivarmos com respeito à x e utilizando os resultados obtidos teremos a fórmula destacada .

Agora basta aplicar a fórmula em cada exercício e fazer a pior parte, contas !
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: função demanda
Autor: ssousa3 - Dom Abr 03, 2011 20:55

alguém poderia me ajudar nesse exercício aqui Uma loja de CDs adquire cada unidade por R$20,00 e a revende por R$30,00. Nestas condições,
a quantidade mensal que consegue vender é 500 unidades. O proprietário estima que, reduzindo o preço para R$28,00, conseguirá vender 600 unidades por mês.
a) Obtenha a função demanda, supondo ser linear

Eu faço ensino médio mas compro apostilas de concursos para me preparar para mercado de trabalho e estudar sozinho não é fácil. Se alguém puder me ajudar aqui fico grato


Assunto: função demanda
Autor: ssousa3 - Seg Abr 04, 2011 14:30

Gente alguém por favor me ensine a calcular a fórmula da função demanda *-)