• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função inversa

Função inversa

Mensagempor Janoca » Seg Jun 30, 2014 00:37

Essa questão postei nesse tópico, porque estou com dificuldade nessa função inversa, e consequentemente posso me atrapalhar na derivada desse tipo de função inversa.
Questão:
Seja f(x)=\frac{{e}^{x}- {e}^{-x}}{2}.

Mostre que f é inversível e determine sua inversa g.


a resposta desta questão é y=ln(x+\sqrt[]{x^2+1}), manipulei algebricamente mas não sei onde errei.
Janoca
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 30
Registrado em: Sex Jun 06, 2014 16:47
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: cursando

Re: Função inversa

Mensagempor e8group » Seg Jun 30, 2014 02:03

Fica subtendido que f foi definida de \mathbb{R} em \mathbb{R} .

As informações (a),(b) e (c) são equivalentes ; e também (d) e (e) os são .

(a) f é injetora
(b) f admite inversa à esquerda
(c) f é estritamente monótona

(d) f é sobrejetora
(e) f admite inversa à direita

Se f satisfaz um dos itens (a),(b) ou (c) juntamente com (d) ou (e) , então f é bijetora .(admite inversa)

Vamos mostrar que f é sobrejetora .

Uma forma possível : (TVI)

\lim_{x\to + \infty} f(x) = +\infty e \lim_{x\to  - \infty} f(x) = -\infty .Como f é contínua , (pois é escrita como soma de duas funções contínuas ) , então dado qualquer k \in (-\infty , +\infty) , o TVI garanti que existe c em (-\infty , +\infty) t.q f(c) = k o que implica f sobrejetiva .

Quanto a injetividade segue por f'(x) > 0 , \forall x (verifique )[isso significa que f é estritamente crescente ] .

Outra forma ...

Fixe x real (a princípio arbitrário , se precisar de + hipóteses , trabalhe em cima dos casos isoladamente) . Note que \frac{e^{x} -e^{-x}}{2}  \in \mathbb{R} . Deixe

y =  \frac{e^{x} -e^{-x}}{2}  (*) isto equivale 2y = e^{x} -e^{-x} =  e^x - (e^x)^{-1} . Agora resolva a eq. para e^x e depois tome o ln em ambos lados . (Dica use a fórmula resolvente e.q segundo grau ) .

A ideia é ...

Para cada x que escolho consigo obter um único y correspondente através de (*) , e reciprocamente ; para cada y que escolho consigo obter um único x obtido pela solução acima .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}