por Janoca » Ter Jun 17, 2014 01:05
Com base nesse gráfico que anexei, peço que me ajudem a resolver esta questão;
No intervalo

, o valor médio de f(t),

é:
a) entre 0 e 1;
b) 0;
c) entre 0 e -1;
d) g(1);
e) entre -1 e -2.
Não sei como responder.
- Anexos
-

- Gráfico da questão
-
Janoca
- Usuário Dedicado

-
- Mensagens: 30
- Registrado em: Sex Jun 06, 2014 16:47
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática
- Andamento: cursando
por alienante » Ter Jun 17, 2014 19:07
Seja f(c) o velor médio dá função representada pelo gráfico dado

-
alienante
- Usuário Dedicado

-
- Mensagens: 43
- Registrado em: Seg Nov 25, 2013 19:18
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por e8group » Ter Jun 17, 2014 21:47
Se me permitem participar ; analisando o gráfico consegui obter um limitante inferior para integral

(levando em conta que o raciocínio estar certo ) . Infelizmente perdi a conexão com a internet e o que eu tinha feito perdi .
Então , segue uma dica :
Decomponha a integral em soma de integrais,sendo cada uma delas sobre um dos intervalos
![[0,1] ; [1,3] ; [3,7] ; [7,9] [0,1] ; [1,3] ; [3,7] ; [7,9]](/latexrender/pictures/a1399b15beac5a65e106b28407e3e8c8.png)
e
![[9,10] [9,10]](/latexrender/pictures/161d392c82c6c3fa93f611bd9284b6b6.png)
.
No primeiro intervalo , note que a área do triângulo retângulo (base medindo 1/2 e altura 3 ) que é

é menor que a integral de f(x) sobre o mesmo intervalo ; no segundo (compare por área de retângulo ) ,

; no terceiro (compare por área de trapézio ) ,

; no quarto (compare por área de retângulo )

e no último (compare com área de triângulo )

.
Somando-se obterá o limitante inferior 0.25 .
Resumidamente foi nesta linha que trabelhei .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Janoca » Qua Jun 18, 2014 13:15
A resposta certa não seria a letra a? ao inves da c.
-
Janoca
- Usuário Dedicado

-
- Mensagens: 30
- Registrado em: Sex Jun 06, 2014 16:47
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática
- Andamento: cursando
por alienante » Qua Jun 18, 2014 14:07
concorda comigo que pelo gráfico f(10)<f(0)? logo f(10)-f(0)<0, só seria a letra a se e somente se f(10)-f(0)>0
-
alienante
- Usuário Dedicado

-
- Mensagens: 43
- Registrado em: Seg Nov 25, 2013 19:18
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por Janoca » Qua Jun 18, 2014 14:59
Concordo! Obrigada
-
Janoca
- Usuário Dedicado

-
- Mensagens: 30
- Registrado em: Sex Jun 06, 2014 16:47
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática
- Andamento: cursando
por e8group » Qua Jun 18, 2014 15:34
Caro , alienante . Acho que você está equivocado , não está ? Ou eu estou raciocinando erroneamente ??
" concorda comigo que pelo gráfico f(10)<f(0)? logo f(10)-f(0)<0, só seria a letra a se e somente se f(10)-f(0)> 0"
Isto é falso . Contra-exemplo :
Defina

. Nós temos

, mas !

.
No mínimo a integral requerida está entre

, pois vê-se no gráfico que a função é limitada inferiormente por

e superiormente por

e a integral cumpre com a monotonicidade .
Até aqui , os itens que fazem sentido são as letras

e

entretanto , pelo post acima visto que a integral é limitada inferiormente por um n° entre zero e 1 ; logo só pode ser (a) .
Para frisar o que estou dizendo vou deixar a imagem anexada , compare a integral com a área dos retângulos , triângulos e trapézios .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por alienante » Qua Jun 18, 2014 18:11
De fato, percebi agora meu erro, obrigado por me corrigir santhiago
-
alienante
- Usuário Dedicado

-
- Mensagens: 43
- Registrado em: Seg Nov 25, 2013 19:18
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [VALOR MÉDIO]
por magellanicLMC » Sex Fev 07, 2014 23:05
- 2 Respostas
- 1563 Exibições
- Última mensagem por magellanicLMC

Sáb Fev 08, 2014 17:00
Cálculo: Limites, Derivadas e Integrais
-
- teorema do valor medio
por matmatco » Seg Nov 14, 2011 10:18
- 3 Respostas
- 2358 Exibições
- Última mensagem por LuizAquino

Seg Nov 14, 2011 20:46
Cálculo: Limites, Derivadas e Integrais
-
- Teorema do valor médio
por crsjcarlos » Qua Mai 01, 2013 12:09
- 1 Respostas
- 1884 Exibições
- Última mensagem por e8group

Qua Mai 01, 2013 14:07
Cálculo: Limites, Derivadas e Integrais
-
- [teorema do valor médio]
por Ge_dutra » Seg Jun 17, 2013 00:12
- 0 Respostas
- 1137 Exibições
- Última mensagem por Ge_dutra

Seg Jun 17, 2013 00:12
Cálculo: Limites, Derivadas e Integrais
-
- Duvida teorema do valor médio
por markitodq » Dom Abr 21, 2013 09:47
- 0 Respostas
- 1084 Exibições
- Última mensagem por markitodq

Dom Abr 21, 2013 09:47
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.