• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Taxas Relacionadas

Taxas Relacionadas

Mensagempor RonnieAlmeida » Qui Mai 22, 2014 16:58

Uma partícula move-se ao longo da curva y = 2sen\left(\pi x/2 \right). Quando a partícula passa pelo ponto (1/3; 1), sua coordenada x cresce a uma taxa de \sqrt[2]{10} cm/s. Quão rápido a distância da partícula à sua origem está variando nesse momento ?
RonnieAlmeida
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qui Mai 22, 2014 16:35
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Taxas Relacionadas

Mensagempor alienante » Dom Jun 15, 2014 07:59

Olha a taxa de variação do deslocamento é\frac{ds}{dt}=\frac{dx}{dt}{| \right|}_{x=x0}+\frac{dy}{dt}{| \right|}_{y=y0}.Como\frac{dx}{dt}{| \right|}_{x=\frac{1}{3}}=\sqrt[]{10}cm/s\,\Rightarrow\,\frac{dy}{dt}{| \right|}_{y=1}=2cos\left(\frac{\pi x}{2} \right)\frac{\pi}{2}\frac{dx}{dt}{| \right|}_{x=\frac{1}{3}}=2cos(\frac{\pi}{6})\frac{\pi}{2}\cdot\sqrt[]{10}=\frac{\sqrt[]{30}\pi}{2}cm/s\,\Rightarrow\,\frac{ds}{dt}=\sqrt[]{10}+\frac{\sqrt[]{30}\pi}{2}=\frac{\sqrt[]{10}\left(2+\pi\sqrt[]{3} \right)}{2}cm/s
alienante
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 43
Registrado em: Seg Nov 25, 2013 19:18
Formação Escolar: GRADUAÇÃO
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)