• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite exponencial

Limite exponencial

Mensagempor Jhennyfer » Qua Mai 14, 2014 20:07

Pessoal, estou nesta questão faz tempo e não consigo resolver. Ali é x tendendo a zero, não consegui colocar direito.
Tentem me ajudar utilizando apenas recursos algébricos, pois estou no início de cálculo e o prof não aceita soluções por derivação, etc.

\lim_{0}\frac{9^x-5^x}{x}
Jhennyfer
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 67
Registrado em: Sáb Mar 30, 2013 15:19
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite exponencial

Mensagempor e8group » Qui Mai 15, 2014 02:20

Dica :

Some 1 +(-1) = 0 no numerador . Use associatividade ,distributividade , e escreva 9^x - 5^x = 9^x -1 -(5^x -1) . Avance .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite exponencial

Mensagempor Jhennyfer » Qui Mai 15, 2014 19:39

Santhiago, ainda não consegui pensar em nada =/ o que eu faço com o denominador?
Jhennyfer
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 67
Registrado em: Sáb Mar 30, 2013 15:19
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite exponencial

Mensagempor e8group » Qui Mai 15, 2014 23:49

Como consequência do limite fundamental que designa a constante de Euler , o limite \lim_{x\to 0}  \frac{a^x -1}{x} vale ln(a) para qualquer a > 0 fixado . Desta forma, podemos reescrever o limite dado na forma acima . Para tal é preciso manipular a expressão de forma conveniente .

Tente concluir .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite exponencial

Mensagempor Jhennyfer » Sex Mai 16, 2014 10:36

Bom Santhiago, eu havia resolvido assim...
colocando ln, mas falaram q estava errado, olha só,

\lim_{o} \frac{ln9^x - ln5^x}{x}

\lim_{o} \frac{xln9 - xln5}{x}

\lim_{o} \frac{x(ln9 - ln5)}{x}

\lim_{o} ln9-ln5

\frac{ln9}{ln5}

Resultado = 1,36
Jhennyfer
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 67
Registrado em: Sáb Mar 30, 2013 15:19
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite exponencial

Mensagempor e8group » Sex Mai 16, 2014 13:09

Sim, está errado . Da forma que você fez está alterando o resultado . Note que para qualquer b real

b = ln(e^b) , assim vale que 5^x = ln(e^{5^x})(não como você fez) ... mas fazendo isso não resolve , ainda teremos indeterminação .

Podemos usar Regra de L'hospital (temos indeterminação "0/0" ) ou um resultado relacionado com o limite fundamental que já postei .Depende das ferramentas dispostas a usar .

Exemplo :

Usando o resultado .

\lim_{x\to 0} \frac{ \pi^{x} - e^{x}}{x} vale ln(\pi) - 1 pois

\lim_{x\to 0} \frac{ \pi^{x} - e^{x}}{x} =   \lim_{x\to 0} \frac{ \pi^{x} - 1  - (e^{x} - 1) }{x} = \lim_{x\to 0} \frac{ \pi^{x} -1}{x}  + \lim_{x\to 0} \frac{ e^{x} -1}{x}   =    ln(\pi) - ln(e) .

Ou alternativamente , \frac{ \pi^{x} - e^{x}}{x}  = e^x \frac{\dfrac{\pi^x }{e^x} -1 }{x} = e^x \frac{\left(\dfrac{\pi }{e} \right)^x  -1 }{x} . Usando a regra do produto , o resultado segue .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.