• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Estimativa do Erro] Aproximação de pi por ...

[Estimativa do Erro] Aproximação de pi por ...

Mensagempor e8group » Sex Mai 02, 2014 14:04

Preciso limitar D^n (arctan(t)) , t  \in (1 - \delta ,1 + \delta) , \delta > 0 para determinar n de modo que o erro da aproximação de \pi por 4 \sum_{k=1}^n \frac{(-1)^{k+1}}{2k-1} seja menor que 10^{-10} .

Alguém tem alguma ideia ? Como obter uma expressão para D^n (arctan(t)) ?


Até agora só consegui isto abaixo ...


i) Primeiro vamos garantir que D^n (arctan(t)) é limitada em (1 - \delta ,1 + \delta) , \delta > 0 .

Derivando arctan(t) n-vezes , vamos obter uma expressão da forma \frac{h(t)}{(1+t^2)^{n+1}} ,onde h(t) é um polinômio deg(h(t)) < deg((1+t^2)^{n+1}) e portanto D^n(arctan(t)) é uma função racional e 1+t^2 \neq 0 \forall t \implies  (1+t^2)^{n+1} \neq 0 , \forall t .Sendo assim garantimos que D^n arctan é contínua .Em particular , ela é contínua em qualquer intervalo fechado não degenerado contendo a vizinhança de 1 .Logo pelo Teorema de Weierstrass , D^n arctan é limitada neste intervalo .

Assim , \exists k > 0 :  | D^n (arctan(t))| < k  , \forall  t \in (1 - \delta ,1 + \delta)



ii) Segunda parte trabalhosa, determinar D^n (arctan(t)) e encontrar uma cota .

Pensei assim :


Seja I_n (t) = D^n(arctan(t)) = D^n \left(\int_0^t \frac{d\zeta }{1+ \zeta^2}\right) =  \frac{1}{2i}D^n \left(\int_0^t  \left[ \frac{1 }{t -i} -  \frac{1 }{t +i}  \right ]d \zeta \right)

Daí , temos I_n(t) = \frac{1}{2i}(-1)^n n! \left[ \frac{1}{(t-i)^{n+1}} -  \frac{1}{(t+i)^{n+1}}\right ]  =  \frac{i}{2}(-1)^{n+1} \frac{n!}{(t+1)^{n+1}}\left[ (t+i)^{n+1}- (t-i)^{n+1}\right] e finalmente obtemos

I_n(t) = \frac{(-1)^{n+1}n!}{2(1+t)^{n+1}} \sum_{m=0}^{n+1} \binom{n+1}{m}[1-(-1)^{m+1}]i^{k+1} \cdot t^{n+1 -k} .

Logo ,

|I_n(t)| = \frac{n!}{2(1+t)^{n+1}} | \sum_{m=0}^{n+1} \binom{n+1}{m}[1+(-1)^{m+1}]i^{k+1} \cdot t^{n+1 -k}| \leq    \frac{n!}{2(1+t)^{n+1}}  \cdot \sum_{m=0}^{n+1} \binom{n+1}{m}|(1-(-1)^{m+1})i^{k+1}|t^{n+1-k} \leq \frac{n!}{2(1+t)^{n+1}}  \cdot \sum_{m=0}^{n+1} \binom{n+1}{m} t^{n+1-k}  = \frac{n!}{2(1+t)^{n+1}} \cdot (1+t)^{n+1}  =  \frac{n!}{2} .

Portanto D^n arctan(t) é limitada por n!/2 .

Mas esta cota não ajuda , meu objetivo era obter D^n arctan(t) < 2(n-1)! .


iii) Encontrar n .

Sabemos que |\pi - 4 \sum_{k=1}^n \frac{(-1)^{k+1}}{2k-1} | = R_n(1) = \frac{D^{n} arctan(c_t)}{(n)!} = \frac{I_{n+1}(t)}{(n+1)!}(Forma Lagrange). , então

| R_n(1)  | \leq   \frac{(n+1)!}{2 (n+1)!} = 1/2 , .

Se tivéssemos demostrado que |D^n arctan(t)| <2 (n-1)! .

| R_n(1)  | \leq    \frac{2}{n} e com isso | R_n(1)  | \leq 10^{-10} sempre que n \geq 2 \cdot 10^{10} que é a resposta do gabarito .

Qualquer ajuda é bem vinda .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.