• Anúncio Global
    Respostas
    Exibições
    Última mensagem

integral

integral

Mensagempor ilane » Dom Abr 27, 2014 14:06

\int_{0}^{1} t\sqrt{10+03t^2} d7

eu achei o seguinte resultado;
\frac{7}{9} \approx 0,777778 o o resultado seria 0 me auxiliem por favor
ilane
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Ter Abr 08, 2014 10:53
Formação Escolar: GRADUAÇÃO
Área/Curso: quimica
Andamento: cursando

Re: integral

Mensagempor e8group » Dom Abr 27, 2014 15:15

Zero ?? Não , não mesmo . O integrando sempre assume valores positivos quando t varia em intervalo de números não negativos ,assim a porção do gráfico da função dada pelo integrando está acima do eixo t , quando t varia em [0,1] .A menos que você digitou erroneamente a expressão .

OBS_1 .: Você está esquecendo de deixar os códigos entre as tag's tex .

O certo é
Código: Selecionar todos
  [tex]  \int_0^1 t \sqrt{10 0.3t^2} [/tex]   


Resultado :

\int_0^1 t \sqrt{t^2 +0.3 t^2}

OBS_2 .: Se seu objetivo for apenas conferir o resultado você pode digitar a própria expressão em latex no wolframalpha para ver a resposta , como vemos

http://www.wolframalpha.com/input/?i=%5 ... 3t%5E2%7D+
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.