• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[limites]Calcular limite

[limites]Calcular limite

Mensagempor fff » Qua Abr 09, 2014 12:29

\lim_{+\propto}\frac{{e}^{2x}-{e}^{x}}{ln(x+1)}
R:+\propto (só posso utilizar limites notáveis)
Avatar do usuário
fff
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 103
Registrado em: Sáb Dez 21, 2013 11:30
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Informática
Andamento: cursando

Re: [limites]Calcular limite

Mensagempor e8group » Sex Abr 11, 2014 01:14

O limite é + infty .

Pq ?

Uma alternativa ...

Proposição :

Se f(x) \geq g(x) para todo a < x < +\infty e lim(g(x)) = +\infty então lim(f(x)) = +\infty .(a podendo ser número real ou - \infty )

Agora note que

e^x -1  > x para todo x > 0 . Então

e^{x} (e^{x} -1) = e^{2x} -e^{x} > e^{x} x \implies \frac{e^{2x} -e^{x} }{ln(x+1)} > \frac{e^{x} x  }{ln(x+1)}  > \frac{(x+1) x}{ln(x+1) }  =  x \cdot \frac{x+1}{ln(x+1) } > x    ,  x >  0 .

Ou seja , \frac{e^{2x} -e^{x} }{ln(x+1)} > x para todo +\infty > x > 0 .

Daí quando passamos ao limite com x \to +\infty , obteremos o resultado .


P.S.: Plote os gráficos para x > 0 e faça uma comparação .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.