por ilane » Ter Abr 08, 2014 15:00
calcule
\int_{0}^{1} (\int_{2}^{3} t^4 sen xdt) dx
fazendo eu achei a seguinte resposta, mais não tenho certeza da resposta, uma integral indefinida mas com uma constante masnão tenho certeza da resposta p, poderia me ajuadar
-
ilane
- Usuário Ativo

-
- Mensagens: 17
- Registrado em: Ter Abr 08, 2014 10:53
- Formação Escolar: GRADUAÇÃO
- Área/Curso: quimica
- Andamento: cursando
por Russman » Ter Abr 08, 2014 23:33
Pelo q eu entendi você quer fazer uma integral do tipo

.
Se as variáveis

e

são independentes, você pode tomar

como constante frente ao processo de integração na variável

.
![I=\int_{0}^{1} \int_{2}^{3} t^4 \sin x \quad dtdx = \int_{0}^{1}\sin(x)dx \int_{2}^{3} t^4dt = \left [ -\cos(x) \right ]_{0}^{1}. \left [ \frac{1}{5}t^5 \right ]_{2}^{3} = (-\cos(1)+1).\frac{1}{5}(3^5-2^5) I=\int_{0}^{1} \int_{2}^{3} t^4 \sin x \quad dtdx = \int_{0}^{1}\sin(x)dx \int_{2}^{3} t^4dt = \left [ -\cos(x) \right ]_{0}^{1}. \left [ \frac{1}{5}t^5 \right ]_{2}^{3} = (-\cos(1)+1).\frac{1}{5}(3^5-2^5)](/latexrender/pictures/22cd492c355925cb0b56126abde07c68.png)
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Integral] Resolver Integral definida com trigonometria
por rodrigoboreli » Dom Set 07, 2014 01:02
- 1 Respostas
- 4117 Exibições
- Última mensagem por adauto martins

Sex Out 17, 2014 12:39
Cálculo: Limites, Derivadas e Integrais
-
- [Cálculo Integral] Integral Definida
por ARCS » Sáb Fev 02, 2013 21:37
- 2 Respostas
- 3453 Exibições
- Última mensagem por e8group

Sáb Fev 02, 2013 22:13
Cálculo: Limites, Derivadas e Integrais
-
- [integral] integral definida por partes
por gabriel feron » Seg Mar 11, 2013 00:48
- 2 Respostas
- 2902 Exibições
- Última mensagem por gabriel feron

Seg Mar 11, 2013 18:19
Cálculo: Limites, Derivadas e Integrais
-
- [Integral] Derivar integral definida
por troziinho » Ter Mar 31, 2015 20:26
- 0 Respostas
- 2383 Exibições
- Última mensagem por troziinho

Ter Mar 31, 2015 20:26
Cálculo: Limites, Derivadas e Integrais
-
- Integral definida
por exploit » Ter Set 07, 2010 19:17
- 4 Respostas
- 3447 Exibições
- Última mensagem por exploit

Qua Set 08, 2010 19:58
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Conjunto dos números racionais.
Autor:
scggomes - Sex Fev 18, 2011 10:38
Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:
Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?
Grata.
Assunto:
Conjunto dos números racionais.
Autor:
MarceloFantini - Sex Fev 18, 2011 12:27

Assunto:
Conjunto dos números racionais.
Autor:
scggomes - Sex Fev 18, 2011 12:55
também pensei que fosse assim, mas a resposta é

.
Obrigada Fantini.
Assunto:
Conjunto dos números racionais.
Autor:
MarceloFantini - Sex Fev 18, 2011 13:01
Como

:
O que você fez?
Assunto:
Conjunto dos números racionais.
Autor:
scggomes - Sex Fev 18, 2011 16:17
eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.
Obrigada.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.