por amigao » Dom Mar 23, 2014 19:38
Resolva por integrais triplas o seguinte exercicio.
Calcule o centro de massa do cone
![\sqrt[]{x^2+ y^2} \leq z \leq 1 \sqrt[]{x^2+ y^2} \leq z \leq 1](/latexrender/pictures/903e7cfd27df32550b0a10149de23ab7.png)
cuja densidade de massa no ponto (x; y; z) seja o quadrado da distância do ponto ao eixo z.
Fiz de tudo mas minha resposta não bateu com PCM =(0;0;3/4) !! Alguém pode me ajudar?
-
amigao
- Usuário Dedicado

-
- Mensagens: 28
- Registrado em: Sáb Mai 11, 2013 11:52
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Centro da massa
por belabela18 » Dom Set 23, 2018 04:33
- 0 Respostas
- 7229 Exibições
- Última mensagem por belabela18

Dom Set 23, 2018 04:33
Cálculo: Limites, Derivadas e Integrais
-
- Centro de Massa.
por AnaCarolina22 » Qua Abr 24, 2019 12:45
- 0 Respostas
- 10526 Exibições
- Última mensagem por AnaCarolina22

Qua Abr 24, 2019 12:45
Mecânica
-
- [Física] Centro de massa
por renan_a » Sex Out 26, 2012 09:55
- 1 Respostas
- 2383 Exibições
- Última mensagem por young_jedi

Sex Out 26, 2012 12:15
Fundamentos de Mecânica
-
- Integral - centro de massa
por marinalcd » Sáb Fev 23, 2013 18:12
- 7 Respostas
- 5027 Exibições
- Última mensagem por Man Utd

Qua Out 30, 2013 12:30
Cálculo: Limites, Derivadas e Integrais
-
- [Integral] - Centro de Massa da barra
por klueger » Sex Mar 22, 2013 17:07
- 1 Respostas
- 3500 Exibições
- Última mensagem por young_jedi

Sáb Mar 23, 2013 16:53
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.